School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
Science. 2013 May 17;340(6134):832-7. doi: 10.1126/science.1234621.
The emergence of complex nano- and microstructures is of fundamental interest, and the ability to program their form has practical ramifications in fields such as optics, catalysis, and electronics. We developed carbonate-silica microstructures in a dynamic reaction-diffusion system that allow us to rationally devise schemes for precisely sculpting a great variety of elementary shapes by diffusion of carbon dioxide (CO2) in a solution of barium chloride and sodium metasilicate. We identify two distinct growth modes and show how continuous and discrete modulations in CO2 concentration, pH, and temperature can be used to deterministically switch between different regimes and create a bouquet of hierarchically assembled multiscale microstructures with unprecedented levels of complexity and precision. These results outline a nanotechnology strategy for "collaborating" with self-assembly processes in real time to build arbitrary tectonic architectures.
复杂的纳米和微观结构的出现具有重要的意义,而能够对其形态进行编程在光学、催化和电子等领域具有实际的影响。我们在动态反应扩散系统中开发了碳酸盐-二氧化硅微结构,使我们能够通过在氯化钡和偏硅酸钠溶液中扩散二氧化碳(CO2)来合理设计方案,精确雕刻出各种基本形状。我们确定了两种不同的生长模式,并展示了如何通过连续和离散的 CO2 浓度、pH 值和温度调制,在不同的状态之间进行确定性切换,并创建一束具有前所未有的复杂性和精度的层次组装多尺度微结构。这些结果概述了一种纳米技术策略,用于实时“协作”自组装过程,以构建任意的构造架构。