Department of Chemical Engineering and Materials Science, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
Analyst. 2013 Jul 7;138(13):3719-27. doi: 10.1039/c3an00020f.
Nanometer-scale curvature patterns of an underlying substrate are imposed on lipid multibilayers with each pattern imparting distinctly different sorting dynamics to a metastable pixelation pattern of coexisting liquid ordered (Lo)-liquid disordered (Ld) lipid phases. Therefore, this work provides pathways toward mechanical energy-based separations for analysis of biomembrane-associate species. The central design concept of the patterned sections of the silica substrate is a square lattice pattern of 100 nm projected radius poly(methyl methacrylate) (PMMA) hemispherical features formed by electron beam lithography which pixelates the coexisting phases in order to balance membrane bending and line energy. In one variation, we surround this pattern with three PMMA walls/fences 100 nm in height which substantially slows the loss of the high line energy pixelated Lo phase by altering the balance of two competing mechanism (Ostwald ripening vs. vesiculation). In another walled variation, we form a gradient of the spacing of the 100 nm features which forces partitioning of the Lo phase toward the end of the gradient with the most open (400 nm spacing) lattice pattern where a single vesicle could grow from the Lo phase. We show that two other variations distinctly impact the dynamics, demonstrating locally slowed loss of the high line energy pixelated Lo phase and spontaneous switching of the pixel location on the unit cell, respectively. Moreover, we show that the pixelation patterns can be regenerated and sharpened by a heating and cooling cycle. We argue that localized variations in the underlying curvature pattern have rather complex consequences because of the coupling and/or competition of dynamic processes to optimize mechanical energy such as lipid diffusion, vesiculation and growth, and phase/compositional partitioning.
纳米级曲率图案的底层衬底强加于脂质多层膜与每个模式赋予明显不同的排序动力学到共存的亚稳斑图的液体有序(Lo)-液体无序(Ld)脂质相。因此,这项工作为基于机械能的分离提供了途径,用于分析与生物膜相关的物种。图案化硅基底的设计概念的核心是 100nm 投影半径聚甲基丙烯酸甲酯(PMMA)的正方形晶格图案形成的电子束光刻的半球形特征,该特征对共存相进行了像素化,以平衡膜弯曲和线能量。在一种变化中,我们用 100nm 高的三个 PMMA 壁/围栏包围这个图案,这大大减缓了高线能量像素化 Lo 相的损失,通过改变两种竞争机制(奥斯特瓦尔德熟化与囊泡形成)的平衡。在另一个有壁的变化中,我们形成了 100nm 特征间距的梯度,迫使 Lo 相分配到梯度的末端,具有最开放的(400nm 间距)晶格图案,其中一个囊泡可以从 Lo 相生长。我们表明,另外两种变化明显影响动力学,分别证明局部失活的高线能量像素化 Lo 相的速度降低和单元晶格上像素位置的自发切换。此外,我们表明,像素化图案可以通过加热和冷却循环再生和锐化。我们认为,由于动态过程的耦合和/或竞争,以优化机械能,如脂质扩散、囊泡形成和生长以及相/组成分配,底层曲率图案的局部变化会产生相当复杂的后果。