Suppr超能文献

侧向压力介导的蛋白质分配到有序液相/无序液相结构域中。

Lateral pressure-mediated protein partitioning into liquid-ordered/liquid-disordered domains.

作者信息

Frewein Moritz, Kollmitzer Benjamin, Heftberger Peter, Pabst Georg

机构信息

University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, A-8010 Graz, Austria.

出版信息

Soft Matter. 2016 Apr 7;12(13):3189-95. doi: 10.1039/c6sm00042h. Epub 2016 Feb 26.

Abstract

We have studied the contributions of stored elastic energies in liquid-ordered (Lo) and liquid-disordered (Ld) domains to transmembrane proteins using the lateral pressure concept. In particular we applied previously reported experimental data for the membrane thickness, intrinsic curvature and bending elasticities of coexisting Lo/Ld domains to calculate whether proteins of simple geometric shapes would preferentially diffuse into Lo or Ld domains and form oligomers of a certain size. For the studied lipid mixture we generally found that proteins with convex shapes prefer sorting to Ld phases and the formation of large clusters. Lo domains in turn would be enriched in monomers of concave shaped proteins. We further observed that proteins which are symmetric with respect to the bilayer center prefer symmetric Lo or Ld domains, while asymmetric proteins favor a location in domains with Lo/Ld asymmetry. In the latter case we additionally retrieved a strong dependence on protein directionality, thus providing a mechanism for transmembrane protein orientation.

摘要

我们利用侧向压力概念研究了液体有序(Lo)和液体无序(Ld)结构域中储存的弹性能对跨膜蛋白的贡献。特别是,我们应用先前报道的关于共存的Lo/Ld结构域的膜厚度、固有曲率和弯曲弹性的实验数据,来计算简单几何形状的蛋白质是否会优先扩散到Lo或Ld结构域中,并形成一定大小的寡聚体。对于所研究的脂质混合物,我们通常发现具有凸形的蛋白质倾向于分选到Ld相并形成大簇。相反,Lo结构域会富集凹形蛋白质的单体。我们进一步观察到,相对于双层中心对称的蛋白质倾向于对称的Lo或Ld结构域,而非对称蛋白质则倾向于定位在具有Lo/Ld不对称性的结构域中。在后一种情况下,我们还发现了对蛋白质方向性的强烈依赖性,从而为跨膜蛋白的取向提供了一种机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f67e/5462092/a5dcc8e5b351/emss-72991-f001.jpg

相似文献

1
Lateral pressure-mediated protein partitioning into liquid-ordered/liquid-disordered domains.
Soft Matter. 2016 Apr 7;12(13):3189-95. doi: 10.1039/c6sm00042h. Epub 2016 Feb 26.
2
Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies.
J Phys Chem B. 2016 Aug 25;120(33):8438-48. doi: 10.1021/acs.jpcb.6b02148. Epub 2016 May 10.
5
Bilayer compositional asymmetry influences the nanoscopic to macroscopic phase domain size transition.
Chem Phys Lipids. 2020 Oct;232:104972. doi: 10.1016/j.chemphyslip.2020.104972. Epub 2020 Sep 15.
6
An Unexpected Driving Force for Lipid Order Appears in Asymmetric Lipid Bilayers.
J Am Chem Soc. 2023 Oct 11;145(40):21717-21722. doi: 10.1021/jacs.3c05081. Epub 2023 Sep 8.
7
Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1343-8. doi: 10.1073/pnas.1009362108. Epub 2011 Jan 4.
8
Lipid-protein interplay and lateral organization in biomembranes.
Chem Phys Lipids. 2015 Jul;189:48-55. doi: 10.1016/j.chemphyslip.2015.05.008. Epub 2015 May 30.
9
On the small size of liquid-disordered + liquid-ordered nanodomains.
Biochim Biophys Acta Biomembr. 2021 Oct 1;1863(10):183685. doi: 10.1016/j.bbamem.2021.183685. Epub 2021 Jun 25.
10
Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains.
Biophys J. 2010 Nov 17;99(10):3309-18. doi: 10.1016/j.bpj.2010.09.064.

引用本文的文献

1
Inside the membrane: a closer look using elastic scattering techniques and friends.
Eur Biophys J. 2025 Jun 26. doi: 10.1007/s00249-025-01761-z.
2
The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes.
Membranes (Basel). 2025 Mar 3;15(3):79. doi: 10.3390/membranes15030079.
3
Allosteric modulation of integral protein activity by differential stress in asymmetric membranes.
PNAS Nexus. 2023 Apr 11;2(5):pgad126. doi: 10.1093/pnasnexus/pgad126. eCollection 2023 May.
4
Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy.
Molecules. 2021 Mar 25;26(7):1850. doi: 10.3390/molecules26071850.
6
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.
Nat Chem Biol. 2020 Jun;16(6):644-652. doi: 10.1038/s41589-020-0529-6. Epub 2020 May 4.
7
Global small-angle scattering data analysis of inverted hexagonal phases.
J Appl Crystallogr. 2019 Mar 28;52(Pt 2):403-414. doi: 10.1107/S1600576719002760. eCollection 2019 Apr 1.
8
Complex biomembrane mimetics on the sub-nanometer scale.
Biophys Rev. 2017 Aug;9(4):353-373. doi: 10.1007/s12551-017-0275-5. Epub 2017 Jul 17.
10
Nonadditive Compositional Curvature Energetics of Lipid Bilayers.
Phys Rev Lett. 2016 Sep 23;117(13):138104. doi: 10.1103/PhysRevLett.117.138104.

本文引用的文献

2
Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions.
J Phys Chem B. 2015 Dec 10;119(49):15075-88. doi: 10.1021/acs.jpcb.5b04878. Epub 2015 Nov 25.
3
Bending Rigidities and Interdomain Forces in Membranes with Coexisting Lipid Domains.
Biophys J. 2015 Jun 16;108(12):2833-42. doi: 10.1016/j.bpj.2015.05.003.
4
MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes.
Structure. 2015 Jul 7;23(7):1350-61. doi: 10.1016/j.str.2015.05.006. Epub 2015 Jun 11.
5
Asymmetric lipid membranes: towards more realistic model systems.
Membranes (Basel). 2015 May 6;5(2):180-96. doi: 10.3390/membranes5020180.
6
In situ determination of structure and fluctuations of coexisting fluid membrane domains.
Biophys J. 2015 Feb 17;108(4):854-862. doi: 10.1016/j.bpj.2014.11.3488.
8
Lipid bilayers: clusters, domains and phases.
Essays Biochem. 2015;57:33-42. doi: 10.1042/bse0570033.
9
Multi-protein assemblies underlie the mesoscale organization of the plasma membrane.
Nat Commun. 2014 Jul 25;5:4509. doi: 10.1038/ncomms5509.
10
Monolayer spontaneous curvature of raft-forming membrane lipids.
Soft Matter. 2013 Dec 7;9(45):10877-10884. doi: 10.1039/C3SM51829A.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验