Suppr超能文献

鉴定和作用机制的植物防御素 NaD1 作为一个新的成员的抗真菌药物针对白色念珠菌。

Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans.

机构信息

La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.

出版信息

Antimicrob Agents Chemother. 2013 Aug;57(8):3667-75. doi: 10.1128/AAC.00365-13. Epub 2013 May 20.

Abstract

In recent decades, pathogenic fungi have become a serious threat to human health, leading to major efforts aimed at characterizing new agents for improved treatments. Promising in this context are antimicrobial peptides produced by animals and plants as part of innate immune systems. Here, we describe an antifungal defensin, NaD1, with activity against the major human pathogen Candida albicans, characterize the mechanism of killing, and identify protection strategies used by the fungus to survive defensin treatment. The mechanism involves interaction between NaD1 and the fungal cell surface followed by membrane permeabilization, entry into the cytoplasm, hyperproduction of reactive oxygen species, and killing induced by oxidative damage. By screening C. albicans mutant libraries, we identified that the high-osmolarity glycerol (HOG) pathway has a unique role in protection against NaD1, while several other stress-responsive pathways are dispensable. The involvement of the HOG pathway is consistent with induction of oxidative stress by NaD1. The HOG pathway has been reported to have a major role in protection of fungi against osmotic stress, but our data indicate that osmotic stress does not contribute significantly to the adverse effects of NaD1 on C. albicans. Our data, together with previous studies with human beta-defensins and salivary histatin 5, indicate that inhibition of the HOG pathway holds promise as a broad strategy for increasing the activity of antimicrobial peptides against C. albicans.

摘要

在最近几十年中,病原真菌已成为人类健康的严重威胁,因此人们做出了巨大努力,旨在鉴定新型药物以改善治疗效果。在这方面,动物和植物产生的抗菌肽作为先天免疫系统的一部分很有前景。在这里,我们描述了一种抗真菌防御素 NaD1,它对主要的人类病原体白色念珠菌具有活性,对其杀伤机制进行了表征,并确定了真菌用于逃避防御素治疗的保护策略。该机制涉及 NaD1 与真菌细胞表面之间的相互作用,随后是膜通透性、进入细胞质、活性氧的过度产生以及氧化损伤诱导的杀伤。通过筛选白色念珠菌突变文库,我们发现高渗透压甘油(HOG)途径在防御素 NaD1 的保护中具有独特的作用,而其他几种应激反应途径则是可有可无的。HOG 途径的参与与 NaD1 诱导的氧化应激一致。据报道,HOG 途径在真菌对抗渗透胁迫的保护中起主要作用,但我们的数据表明,渗透压胁迫对 NaD1 对白色念珠菌的不良影响没有显著贡献。我们的数据,连同以前对人类β-防御素和唾液组蛋白 5 的研究,表明抑制 HOG 途径有望成为提高抗菌肽对白色念珠菌活性的广泛策略。

相似文献

1
Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans.
Antimicrob Agents Chemother. 2013 Aug;57(8):3667-75. doi: 10.1128/AAC.00365-13. Epub 2013 May 20.
3
Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata.
Mol Plant Pathol. 2014 Jan;15(1):67-79. doi: 10.1111/mpp.12066. Epub 2013 Sep 10.
4
Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):6302-12. doi: 10.1128/AAC.01479-16. Print 2016 Oct.
5
Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.
J Biol Chem. 2010 Nov 26;285(48):37513-20. doi: 10.1074/jbc.M110.134882. Epub 2010 Sep 22.
6
Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.
Int J Mol Sci. 2016 Sep 3;17(9):1473. doi: 10.3390/ijms17091473.
7
Fungicidal Potency and Mechanisms of θ-Defensins against Multidrug-Resistant Candida Species.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.00111-18. Print 2018 Jun.
9
Crystal structure of rice defensin OsAFP1 and molecular insight into lipid-binding.
J Biosci Bioeng. 2020 Jul;130(1):6-13. doi: 10.1016/j.jbiosc.2020.02.011. Epub 2020 Mar 16.
10
Whole-Genome Approach to Understanding the Mechanism of Action of a Histatin 5-Derived Peptide.
Antimicrob Agents Chemother. 2020 Feb 21;64(3). doi: 10.1128/AAC.01698-19.

引用本文的文献

1
Uncovering the antifungal potential of Cannabidiol and Cannabidivarin.
PLoS Negl Trop Dis. 2025 Jun 5;19(6):e0013081. doi: 10.1371/journal.pntd.0013081. eCollection 2025 Jun.
2
Nicotianin-I: A Tobacco Floral Nectar Peptide with Anticandidal Activity.
ACS Omega. 2025 May 14;10(20):20213-20225. doi: 10.1021/acsomega.4c10806. eCollection 2025 May 27.
3
The Contribution of Human Antimicrobial Peptides to Fungi.
Int J Mol Sci. 2025 Mar 11;26(6):2494. doi: 10.3390/ijms26062494.
4
Effects of the Tobacco Defensin NaD1 Against Susceptible and Resistant Strains of .
Pathogens. 2024 Dec 10;13(12):1092. doi: 10.3390/pathogens13121092.
6
The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside.
Probiotics Antimicrob Proteins. 2024 Dec;16(6):2269-2304. doi: 10.1007/s12602-024-10354-9. Epub 2024 Sep 3.
8
Current Perspectives of Antifungal Therapy: A Special Focus on .
J Fungi (Basel). 2024 Jun 6;10(6):408. doi: 10.3390/jof10060408.
9
Antifungal Plant Defensins as an Alternative Tool to Combat Candidiasis.
Plants (Basel). 2024 May 29;13(11):1499. doi: 10.3390/plants13111499.

本文引用的文献

1
Properties and mechanisms of action of naturally occurring antifungal peptides.
Cell Mol Life Sci. 2013 Oct;70(19):3545-70. doi: 10.1007/s00018-013-1260-1. Epub 2013 Feb 5.
2
Antifungal drug discovery: something old and something new.
PLoS Pathog. 2012 Sep;8(9):e1002870. doi: 10.1371/journal.ppat.1002870. Epub 2012 Sep 6.
3
The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans.
Mol Microbiol. 2012 Apr;84(1):166-80. doi: 10.1111/j.1365-2958.2012.08017.x. Epub 2012 Mar 5.
4
Antimicrobial peptides: key components of the innate immune system.
Crit Rev Biotechnol. 2012 Jun;32(2):143-71. doi: 10.3109/07388551.2011.594423. Epub 2011 Nov 11.
5
The Antifungal Plant Defensin HsAFP1 from Heuchera sanguinea Induces Apoptosis in Candida albicans.
Front Microbiol. 2011 Mar 16;2:47. doi: 10.3389/fmicb.2011.00047. eCollection 2011.
6
Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans.
Peptides. 2011 Oct;32(10):1996-2002. doi: 10.1016/j.peptides.2011.08.018. Epub 2011 Aug 26.
9
Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process.
J Biol Chem. 2010 Nov 26;285(48):37513-20. doi: 10.1074/jbc.M110.134882. Epub 2010 Sep 22.
10
Stress signalling to fungal stress-activated protein kinase pathways.
FEMS Microbiol Lett. 2010 May;306(1):1-8. doi: 10.1111/j.1574-6968.2010.01937.x. Epub 2010 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验