Suppr超能文献

撞击式悬臂梁:模态不收敛和刚度匹配的重要性。

The impacting cantilever: modal non-convergence and the importance of stiffness matching.

机构信息

Department of Engineering Mathematics, University of Bristol, Queen's Building, Bristol BS8 1TR, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2013 May 20;371(1993):20120434. doi: 10.1098/rsta.2012.0434. Print 2013 Jun 28.

Abstract

The problem of an Euler-Bernoulli cantilever beam whose free end impacts with a point constraint is revisited from the point of view of modal analysis. It is shown that there is non-uniqueness of consistent impact laws for a given modal truncation. Moreover, taking an N-mode compliant, bilinear formulation and passing to the rigid limit leads to a sequence of impact models that does not converge as N--> ∞. The dynamics of such truncated models are studied numerically and found to give rise to quite different dynamics depending on the number of degrees of freedom taken. The simulations are compared with results from simple experiments that show a propensity for multiple-tap dynamics, in which higher-order modes lead to rapidly cycling intermittent contact. The conclusion reached is that, to derive an accurate model, one needs to avoid the impact limit altogether, and take sufficiently many modes in the formulation to match the actual stiffness of the constraining stop.

摘要

从模态分析的角度重新研究了具有自由端的欧拉-伯努利悬臂梁与点约束碰撞的问题。结果表明,对于给定的模态截断,一致碰撞定律并不具有唯一性。此外,采用 N 模态柔顺、双线性公式,并通过刚性极限处理,会导致在 N 趋近于无穷大时,一系列的碰撞模型不会收敛。对这些截断模型的动力学进行了数值研究,结果表明,根据自由度的数量,会产生非常不同的动力学。模拟结果与简单实验的结果进行了比较,实验表明存在多次敲击动力学的趋势,其中高阶模态会导致快速循环的间歇接触。得出的结论是,为了得到一个准确的模型,需要完全避免冲击极限,并在公式中采用足够多的模态,以匹配约束止动器的实际刚度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验