Suppr超能文献

基于变形模型的非刚性 3D 医学图像配准与融合。

Nonrigid 3D medical image registration and fusion based on deformable models.

机构信息

Department of Radiotherapy, Universitätsklinikum Essen, Hufelandstraße 55, 45147 Essen, Germany.

出版信息

Comput Math Methods Med. 2013;2013:902470. doi: 10.1155/2013/902470. Epub 2013 Apr 18.

Abstract

For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.

摘要

对于医学图像的配准,刚性方法往往不能提供足够的自由度,而可靠的弹性方法仅在特殊应用中临床可用。为了在临床环境中获得可靠的结果,弹性模型的自由度数量必须减少。我们提出了一种新颖的基于几何的非刚性 3D 医学图像配准和融合方法。该方法使用基于 3D 表面的变形模型作为指导。在我们的双重方法中,首先将一个图像中的变形网格应用于要配准的物体的边界。此后,从表面网格点的位移中推断出在主动表面所描述的感兴趣区域(ROI)内进行配准和融合所需的非刚性体积变形矢量场。该方法使用准刚性器官(肾脏)和弹性器官(肝脏)的临床图像进行了验证。使用参考图像和模型之间的图像强度差的标准偏差减少作为性能的度量。在肝脏中的血管分叉处放置的地标用作评估弹性肝脏配准结果的金标准。我们的注册方法与使用互信息应用于准刚性肾脏的仿射注册进行了比较。新方法在刚性注册方面的质量提高了 15.11%,置信水平为 99%。然而,当应用于准弹性肝脏时,该方法的平均地标错位为 4.32mm。相比之下,提取肝脏的仿射注册导致明显(P = 0.000001)较小的 3.26mm 错位。总之,我们的验证表明,该新方法适用于内部变形不重要的情况,但在必须考虑内部位移的情况下存在局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a1d/3652073/471b362c4ecd/CMMM2013-902470.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验