Suppr超能文献

将谷氨酰半胱氨酸合成酶活性限制在细胞质中,或将谷胱甘肽生物合成限制在质体中,对于正常的植物发育和胁迫耐受性而言已足够。

Restricting glutamylcysteine synthetase activity to the cytosol or glutathione biosynthesis to the plastid is sufficient for normal plant development and stress tolerance.

作者信息

Lim B, Pasternak M, Meyer A J, Cobbett C S

机构信息

Department of Genetics, The University of Melbourne, Parkville, Victoria, 3010, Australia.

BASF SE, APR/HE - LI470, Limburgerhof, Germany.

出版信息

Plant Biol (Stuttg). 2014 Jan;16(1):58-67. doi: 10.1111/plb.12033. Epub 2013 May 20.

Abstract

The tripeptide glutathione (GSH) is an important metabolite with a broad spectrum of functions, and its homeostasis is essential to maintain cellular redox poise and effective responses to stress in plants. In Arabidopsis GSH is synthesised in two successive enzymatic steps by γ-glutamylcysteine synthetase (GSH1), localised exclusively in plastids, forming the pathway intermediate γ-glutamylcysteine (γ-EC), and then by glutathione synthetase (GSH2), which is located in both plastids and cytosol. This suggests a mechanism for γ-EC export from the plastids and, because the majority of GSH2 transcripts (90%) encode the cytosolic isoform, it is speculated that the cytosol may be the main compartment for GSH biosynthesis. With the availability of knockout lethal mutants of GSH1 and GSH2 in Arabidopsis, we were able to manipulate the GSH biosynthetic pathway within cells through transgenic techniques. We successfully complemented the gsh1 and gsh2 null mutants with a cytosol-targeted bacterial EcGSHA and plastid-targeted Arabidopsis GSH2 protein, respectively, to wild-type phenotypes. These transgenics were little affected under heavy metal (cadmium) or oxidative stress (H2 O2 ) when compared to the wild type. Collectively, our data show that redirecting GSH1 activity exclusively to the cytosol or restricting GSH biosynthesis to the plastids has no significant impact on development or stress resistance, suggesting efficient exchange of γ-EC and GSH between the plastid and cytosol compartments within cells.

摘要

三肽谷胱甘肽(GSH)是一种具有广泛功能的重要代谢产物,其稳态对于维持植物细胞的氧化还原平衡以及对胁迫的有效响应至关重要。在拟南芥中,GSH通过两个连续的酶促步骤合成,首先由仅定位于质体的γ-谷氨酰半胱氨酸合成酶(GSH1)形成途径中间体γ-谷氨酰半胱氨酸(γ-EC),然后由位于质体和细胞质中的谷胱甘肽合成酶(GSH2)合成。这表明存在一种γ-EC从质体输出的机制,并且由于大多数GSH2转录本(90%)编码细胞质异构体,因此推测细胞质可能是GSH生物合成的主要区域。利用拟南芥中GSH1和GSH2的敲除致死突变体,我们能够通过转基因技术在细胞内操纵GSH生物合成途径。我们分别用靶向细胞质的细菌EcGSHA和靶向质体的拟南芥GSH2蛋白成功地将gsh1和gsh2缺失突变体互补为野生型表型。与野生型相比,这些转基因在重金属(镉)或氧化胁迫(H2O2)下几乎没有受到影响。总体而言,我们的数据表明,将GSH1活性仅重定向到细胞质或将GSH生物合成限制在质体中对发育或抗逆性没有显著影响,这表明细胞内质体和细胞质区域之间γ-EC和GSH能够有效交换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验