Department of Biochemistry & Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
Epigenetics Chromatin. 2013 May 21;6(1):13. doi: 10.1186/1756-8935-6-13.
DNA methylation and repressive histone modifications cooperate to silence promoters. One mechanism by which regions of methylated DNA could acquire repressive histone modifications is via methyl DNA-binding transcription factors. The zinc finger protein ZBTB33 (also known as Kaiso) has been shown in vitro to bind preferentially to methylated DNA and to interact with the SMRT/NCoR histone deacetylase complexes. We have performed bioinformatic analyses of Kaiso ChIP-seq and DNA methylation datasets to test a model whereby binding of Kaiso to methylated CpGs leads to loss of acetylated histones at target promoters.
Our results suggest that, contrary to expectations, Kaiso does not bind to methylated DNA in vivo but instead binds to highly active promoters that are marked with high levels of acetylated histones. In addition, our studies suggest that DNA methylation and nucleosome occupancy patterns restrict access of Kaiso to potential binding sites and influence cell type-specific binding.
We propose a new model for the genome-wide binding and function of Kaiso whereby Kaiso binds to unmethylated regulatory regions and contributes to the active state of target promoters.
DNA 甲基化和抑制性组蛋白修饰协同沉默启动子。一种使甲基化 DNA 区域获得抑制性组蛋白修饰的机制是通过甲基化 DNA 结合转录因子。锌指蛋白 ZBTB33(也称为 Kaiso)在体外已被证明优先结合甲基化 DNA,并与 SMRT/NCoR 组蛋白去乙酰化酶复合物相互作用。我们对 Kaiso ChIP-seq 和 DNA 甲基化数据集进行了生物信息学分析,以测试 Kaiso 与甲基化 CpG 结合导致靶启动子中乙酰化组蛋白丢失的模型。
我们的结果表明,与预期相反,Kaiso 在体内不结合甲基化 DNA,而是结合具有高水平乙酰化组蛋白的高度活跃的启动子。此外,我们的研究表明,DNA 甲基化和核小体占有率模式限制了 Kaiso 对潜在结合位点的访问,并影响细胞类型特异性结合。
我们提出了 Kaiso 全基因组结合和功能的新模型,即 Kaiso 结合未甲基化的调控区域,并有助于靶启动子的活跃状态。