Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
J Chem Phys. 2013 May 21;138(19):194105. doi: 10.1063/1.4804669.
This article extends the uncertainty quantification analysis introduced in Paper I for molecular dynamics (MD) simulations of concentration driven ionic flow through a silica nanopore. Attention is now focused on characterizing, for a fixed pore diameter of D = 21 Å, the sensitivity of the system to the Lennard-Jones energy parameters, ɛ(Na(+)) and ɛ(Cl(-)), defining the depth of the potential well for the two ions Na(+) and Cl(-), respectively. A forward propagation analysis is applied to map the uncertainty in these parameters to the MD predictions of the ionic fluxes. Polynomial chaos expansions and Bayesian inference are exploited to isolate the effect of the intrinsic noise, stemming from thermal fluctuations of the atoms, and properly quantify the impact of parametric uncertainty on the target MD predictions. A Bayes factor analysis is then used to determine the most suitable regression model to represent the MD noisy data. The study shows that the response surface of the Na(+) conductance can be effectively inferred despite the substantial noise level, whereas the noise partially hides the underlying trend in the Cl(-) conductance data over the studied range. Finally, the dependence of the conductances on the uncertain potential parameters is analyzed in terms of correlations with key bulk transport coefficients, namely, viscosity and collective diffusivities, computed using Green-Kubo time correlations.
本文扩展了在文献 I 中为通过二氧化硅纳米孔的浓度驱动离子流的分子动力学 (MD) 模拟中引入的不确定性量化分析。现在的重点是针对固定孔径 D = 21 Å ,表征系统对定义两种离子 Na(+)和 Cl(-)的势能阱深度的 Lennard-Jones 能量参数 ε(Na(+))和 ε(Cl(-))的敏感性。正向传播分析用于将这些参数的不确定性映射到 MD 预测的离子通量上。利用多项式混沌展开和贝叶斯推断来分离源自原子热波动的固有噪声的影响,并正确量化参数不确定性对目标 MD 预测的影响。然后使用贝叶斯因子分析来确定最适合表示 MD 噪声数据的回归模型。研究表明,尽管噪声水平很高,但可以有效地推断出 Na(+)电导的响应表面,而噪声在研究范围内部分掩盖了 Cl(-)电导数据中潜在的趋势。最后,根据与使用格林-库博时间相关计算的关键体传输系数(即粘度和集体扩散系数)的相关性,分析电导对不确定的势能参数的依赖性。