Suppr超能文献

pH 对二氧化硅/水界面上对硝基苯酚分子吸附和溶剂化的影响。

pH effects on molecular adsorption and solvation of p-nitrophenol at silica/aqueous interfaces.

机构信息

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA.

出版信息

J Phys Chem A. 2013 Jul 25;117(29):6224-33. doi: 10.1021/jp400482v. Epub 2013 May 24.

Abstract

Resonance-enhanced second-harmonic generation (SHG) was used to examine the effects of solution pH and surface charge on para-nitrophenol (pNP) adsorption to silica/aqueous interfaces. During the early stages of monolayer formation, SHG spectra of interfacial pNP showed a single resonant excitation wavelength at approximately 313 nm regardless of solution pH. This resonance wavelength of adsorbed species is lower than the 318 nm excitation maximum of pNP in bulk aqueous solution. Experiments were performed at pHs of 1.0, 5.0, 7.0, and 10.5. Under these conditions, the silica surface carried a surface charge that ranged from slightly positive (pH = 1) to strongly negative (pH = 10.5) due to protonation/deprotonation of surface silanol groups. Over the course of 1-3 h, SHG spectra of pNP evolved so that spectra from interfaces fully equilibrated with solution pH showed two clear resonance features with wavelengths of approximately 310 and 330 nm. These wavelengths imply that adsorbed pNP samples two discrete local solvation environments at the silica/aqueous interface. On the basis of the solvatochromic behavior of pNP in different bulk solvents, the shorter-wavelength feature corresponds to a local environment having an effective dielectric constant of 9.5 (similar to that of dichloromethane), while the longer-wavelength feature lies outside of pNP's standard solvatochromic window. This longer-wavelength result implies an effective dielectric constant greater than that of bulk water or an adsorption mechanism that has pNP adsorbates sharing a proton with surface silanol groups (and adopting an electronic structure that begins to resemble that of its deprotonated form, p-nitrophenoxide). The longer-wavelength feature is weakest in the low-pH systems when the surface is either neutral or slightly positively charged and most prominent at the negatively charged silica/aqueous (pH = 10.5) interface. pNP adsorption isotherms for all systems showed approximate Langmuir behavior. Using concentration-dependent data from both low and intermediate pH led to calculated adsorption energies of -19 ± 2 kJ/mol for all pH values except pH 10.5 where ΔG(ads) was -6 ± 2 kJ/mol. Taken together, these spectroscopic and adsorption studies of pNP adsorption to silica/aqueous interfaces as a function of aqueous pH show that interfacial acid/base chemistry can require hours to reach equilibrium and that the silica surface presents hydrogen-bonding solutes such as pNP with two distinct adsorption sites. The invariance of pNP's SHG spectra to bulk solution pH suggests that pNP solvation is dominated by substrate-solute interactions, with the adjacent solvent having very little influence on adsorbed solute properties.

摘要

共振增强的二次谐波产生(SHG)被用于研究溶液 pH 值和表面电荷对邻硝基苯酚(pNP)在硅/aqueous 界面上吸附的影响。在单层形成的早期阶段,界面上的 pNP 的 SHG 光谱在大约 313nm 处显示出单个共振激发波长,而与溶液 pH 值无关。这种吸附物种的共振波长低于 pNP 在体相水溶液中的 318nm 激发最大值。实验在 pH 值为 1.0、5.0、7.0 和 10.5 时进行。在这些条件下,由于表面硅醇基团的质子化/去质子化,硅烷表面带有从略微正电荷(pH=1)到强负电荷(pH=10.5)的表面电荷。在 1-3 小时的过程中,pNP 的 SHG 光谱逐渐演变,使得与溶液 pH 值完全平衡的界面上的光谱显示出两个清晰的共振特征,波长约为 310nm 和 330nm。这些波长表明,吸附的 pNP 在硅/aqueous 界面处经历了两个离散的局部溶剂化环境。基于 pNP 在不同体相溶剂中的溶剂化变色行为,较短波长特征对应于具有有效介电常数为 9.5(类似于二氯甲烷)的局部环境,而较长波长特征位于 pNP 的标准溶剂化变色窗口之外。该较长波长的结果意味着有效介电常数大于体相水或具有与表面硅醇基团共享质子的吸附机制(并采用开始类似于其去质子化形式的电子结构,对硝基苯酚氧化物)。当表面为中性或略微带正电荷时,低 pH 系统中的较长波长特征最弱,而在带负电荷的硅烷/aqueous(pH=10.5)界面上则最为明显。所有系统的 pNP 吸附等温线均表现出近似的 Langmuir 行为。使用低 pH 和中间 pH 的浓度依赖性数据,导致除 pH 10.5 外所有 pH 值的吸附能为-19±2kJ/mol,而在 pH 10.5 处,ΔG(ads)为-6±2kJ/mol。总的来说,这些关于 pNP 在硅/aqueous 界面上的吸附作为水溶液 pH 值函数的光谱和吸附研究表明,界面酸碱化学需要数小时才能达到平衡,并且硅烷表面为像 pNP 这样的氢键溶质提供了两个不同的吸附位点。pNP 的 SHG 光谱对体相溶液 pH 值的不变性表明,pNP 的溶剂化主要由底物-溶质相互作用控制,相邻溶剂对吸附溶质性质的影响很小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验