CDM Smith, 900 Chapel Street, Suite 1400, New Haven, CT 06510, United States.
Accid Anal Prev. 2013 Sep;58:53-8. doi: 10.1016/j.aap.2013.04.022. Epub 2013 Apr 26.
The question of whether crash injury severity should be modeled using an ordinal response model or a non-ordered (multinomial) response model is persistent in traffic safety engineering. This paper proposes the use of the partial proportional odds (PPO) model as a statistical modeling technique that both bridges the gap between ordered and non-ordered response modeling, and avoids violating the key assumptions in the behavior of crash severity inherent in these two alternatives. The partial proportional odds model is a type of logistic regression that allows certain individual predictor variables to ignore the proportional odds assumption which normally forces predictor variables to affect each level of the response variable with the same magnitude, while other predictor variables retain this proportional odds assumption. This research looks at the effectiveness of this PPO technique in predicting vehicular crash severities on Connecticut state roads using data from 1995 to 2009. The PPO model is compared to ordinal and multinomial response models on the basis of adequacy of model fit, significance of covariates, and out-of-sample prediction accuracy. The results of this study show that the PPO model has adequate fit and performs best overall in terms of covariate significance and holdout prediction accuracy. Combined with the ability to accurately represent the theoretical process of crash injury severity prediction, this makes the PPO technique a favorable approach for crash injury severity modeling by adequately modeling and predicting the ordinal nature of the crash severity process and addressing the non-proportional contributions of some covariates.
在交通安全工程中,关于事故伤害严重程度应该使用有序响应模型还是无序(多项式)响应模型进行建模的问题一直存在。本文提出使用部分比例优势(PPO)模型作为一种统计建模技术,该技术既弥补了有序和无序响应建模之间的差距,又避免了违反这两种替代方案中固有事故严重程度行为的关键假设。部分比例优势模型是一种逻辑回归,它允许某些个体预测变量忽略比例优势假设,该假设通常迫使预测变量以相同的幅度影响响应变量的每个水平,而其他预测变量保留这种比例优势假设。本研究使用 1995 年至 2009 年康涅狄格州道路上的车辆事故数据,研究了这种 PPO 技术在预测车辆事故严重程度方面的有效性。基于模型拟合度、协变量显著性和样本外预测准确性,将 PPO 模型与有序和多项式响应模型进行比较。这项研究的结果表明,PPO 模型具有足够的拟合度,在协变量显著性和保持样本预测准确性方面总体表现最佳。结合准确表示事故伤害严重程度预测理论过程的能力,这使得 PPO 技术成为一种有利的事故伤害严重程度建模方法,能够充分建模和预测事故严重程度过程的有序性,并解决一些协变量的非比例贡献。