Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, 430068, China.
J Ind Microbiol Biotechnol. 2013 Aug;40(8):811-22. doi: 10.1007/s10295-013-1287-1. Epub 2013 May 24.
During ethanol production, the fermentation cells are always exposed to stresses like high temperature and low nutritional conditions, which affect their growth and productivity. Stress-tolerant strains with high ethanol yield are highly desirable. Therefore, a recombinant Zymomonas mobilis (Z. mobilis) designated as HYM was constructed by integrating three genes (yfdZ, metB, and Pfu-sHSP) into the genome of Z. mobilis CP4 (CP4) via Tn5 transposon in the present study. The yfdZ and metB genes from E. coli were used to decrease the nutritional requirement. The small heat shock protein gene (Pfu-sHSP) from Pyrococcus furiosus (P. furiosus) was used to increase the heat tolerance. The genomic integration of three genes confers on Z. mobilis the ability to grow in simple chemical defined medium without the addition of amino acid. The HYM not only demonstrated the high tolerance to unfavorable lower nutrition stresses but also the capability of converting glucose to ethanol with high yield at higher temperature. What is more, these genetic characteristics were stable up to 100 generations on nonselective medium. The effects of glucose concentration, fermentation temperature, and initial pH on ethanol production of the mutant strain HYM were optimized using a Box-Behnken design (BBD) experiment. The integration of three genes led to a significant increase in ethanol production by 9 % compared with its original Z. mobilis counterpart. The maximum ethanol production of HYM was as high as 105 g/l.
在乙醇生产过程中,发酵细胞总是会受到高温和低营养条件等压力的影响,这会影响它们的生长和生产力。因此,本研究通过 Tn5 转座子将三个基因(yfdZ、metB 和 Pfu-sHSP)整合到 Zymomonas mobilis CP4(CP4)的基因组中,构建了一株名为 HYM 的重组 Zymomonas mobilis。大肠杆菌中的 yfdZ 和 metB 基因被用来降低营养需求。来自 Pyrococcus furiosus(P. furiosus)的小热休克蛋白基因(Pfu-sHSP)被用来提高耐热性。三个基因的基因组整合赋予了 Z. mobilis 在简单的化学定义培养基中生长的能力,无需添加氨基酸。HYM 不仅表现出对不利的低营养压力的高耐受性,而且能够在较高温度下以较高的产率将葡萄糖转化为乙醇。更重要的是,这些遗传特性在非选择性培养基上稳定了 100 代。通过 Box-Behnken 设计(BBD)实验优化了突变株 HYM 的葡萄糖浓度、发酵温度和初始 pH 值对乙醇生产的影响。三个基因的整合使乙醇产量比其原始 Z. mobilis 对照提高了 9%。HYM 的最大乙醇产量高达 105 g/L。