Suppr超能文献

PeSV-Fisher:利用下一代测序数据鉴定体细胞和非体细胞结构变异。

PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data.

机构信息

Genetic Causes of Disease Group, Centre for Genomic Regulation (CRG), Barcelona, Spain.

出版信息

PLoS One. 2013 May 21;8(5):e63377. doi: 10.1371/journal.pone.0063377. Print 2013.

Abstract

UNLABELLED

Next-generation sequencing technologies expedited research to develop efficient computational tools for the identification of structural variants (SVs) and their use to study human diseases. As deeper data is obtained, the existence of higher complexity SVs in some genomes becomes more evident, but the detection and definition of most of these complex rearrangements is still in its infancy. The full characterization of SVs is a key aspect for discovering their biological implications. Here we present a pipeline (PeSV-Fisher) for the detection of deletions, gains, intra- and inter-chromosomal translocations, and inversions, at very reasonable computational costs. We further provide comprehensive information on co-localization of SVs in the genome, a crucial aspect for studying their biological consequences. The algorithm uses a combination of methods based on paired-reads and read-depth strategies. PeSV-Fisher has been designed with the aim to facilitate identification of somatic variation, and, as such, it is capable of analysing two or more samples simultaneously, producing a list of non-shared variants between samples. We tested PeSV-Fisher on available sequencing data, and compared its behaviour to that of frequently deployed tools (BreakDancer and VariationHunter). We have also tested this algorithm on our own sequencing data, obtained from a tumour and a normal blood sample of a patient with chronic lymphocytic leukaemia, on which we have also validated the results by targeted re-sequencing of different kinds of predictions. This allowed us to determine confidence parameters that influence the reliability of breakpoint predictions.

AVAILABILITY

PeSV-Fisher is available at http://gd.crg.eu/tools.

摘要

未加标签

下一代测序技术加速了研究,以开发用于识别结构变体 (SVs) 的高效计算工具,并将其用于研究人类疾病。随着更深层次的数据的获得,一些基因组中更高复杂性 SVs 的存在变得更加明显,但这些复杂重排的大多数检测和定义仍处于起步阶段。SVs 的全面特征是发现其生物学意义的关键方面。在这里,我们提出了一种用于检测缺失、增益、染色体内和染色体间易位以及倒位的管道 (PeSV-Fisher),其计算成本非常合理。我们进一步提供了有关 SVs 在基因组中位置的综合信息,这是研究其生物学后果的关键方面。该算法使用了基于配对读取和读取深度策略的组合方法。PeSV-Fisher 的设计目的是方便识别体细胞变异,因此它能够同时分析两个或更多样本,并生成样本之间非共享变异的列表。我们在可用的测序数据上测试了 PeSV-Fisher,并将其行为与经常部署的工具 (BreakDancer 和 VariationHunter) 进行了比较。我们还在我们自己的测序数据上测试了该算法,该数据来自一名慢性淋巴细胞白血病患者的肿瘤和正常血液样本,我们还通过对不同类型的预测进行靶向重测序来验证了结果。这使我们能够确定影响断点预测可靠性的置信参数。

可用性

PeSV-Fisher 可在 http://gd.crg.eu/tools 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af52/3660373/f2c796231b27/pone.0063377.g001.jpg

相似文献

1
PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data.
PLoS One. 2013 May 21;8(5):e63377. doi: 10.1371/journal.pone.0063377. Print 2013.
6
GASOLINE: detecting germline and somatic structural variants from long-reads data.
Sci Rep. 2023 Nov 27;13(1):20817. doi: 10.1038/s41598-023-48285-0.
7
Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery.
Bioinformatics. 2010 Jun 15;26(12):i350-7. doi: 10.1093/bioinformatics/btq216.
8
SvABA: genome-wide detection of structural variants and indels by local assembly.
Genome Res. 2018 Apr;28(4):581-591. doi: 10.1101/gr.221028.117. Epub 2018 Mar 13.
9
Breakpointer: using local mapping artifacts to support sequence breakpoint discovery from single-end reads.
Bioinformatics. 2012 Apr 1;28(7):1024-5. doi: 10.1093/bioinformatics/bts064. Epub 2012 Feb 1.
10
SVLR: Genome Structural Variant Detection Using Long-Read Sequencing Data.
J Comput Biol. 2021 Aug;28(8):774-788. doi: 10.1089/cmb.2021.0048. Epub 2021 May 10.

引用本文的文献

1
Current status of structural variation studies in plants.
Plant Biotechnol J. 2021 Nov;19(11):2153-2163. doi: 10.1111/pbi.13646. Epub 2021 Jul 20.
2
CLOVE: classification of genomic fusions into structural variation events.
BMC Bioinformatics. 2017 Jul 20;18(1):346. doi: 10.1186/s12859-017-1760-3.
4
PSSV: a novel pattern-based probabilistic approach for somatic structural variation identification.
Bioinformatics. 2017 Jan 15;33(2):177-183. doi: 10.1093/bioinformatics/btw605. Epub 2016 Sep 21.
5
SV-Bay: structural variant detection in cancer genomes using a Bayesian approach with correction for GC-content and read mappability.
Bioinformatics. 2016 Apr 1;32(7):984-92. doi: 10.1093/bioinformatics/btv751. Epub 2016 Jan 6.
6
Local sequence assembly reveals a high-resolution profile of somatic structural variations in 97 cancer genomes.
Nucleic Acids Res. 2015 Sep 30;43(17):8146-56. doi: 10.1093/nar/gkv831. Epub 2015 Aug 17.
7
Identification of copy number variants in whole-genome data using Reference Coverage Profiles.
Front Genet. 2015 Feb 17;6:45. doi: 10.3389/fgene.2015.00045. eCollection 2015.
8
BSSV: Bayesian based somatic structural variation identification with whole genome DNA-seq data.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3937-40. doi: 10.1109/EMBC.2014.6944485.

本文引用的文献

1
The GEM mapper: fast, accurate and versatile alignment by filtration.
Nat Methods. 2012 Dec;9(12):1185-8. doi: 10.1038/nmeth.2221. Epub 2012 Oct 28.
2
DELLY: structural variant discovery by integrated paired-end and split-read analysis.
Bioinformatics. 2012 Sep 15;28(18):i333-i339. doi: 10.1093/bioinformatics/bts378.
3
The life history of 21 breast cancers.
Cell. 2012 May 25;149(5):994-1007. doi: 10.1016/j.cell.2012.04.023. Epub 2012 May 17.
4
Detectable clonal mosaicism and its relationship to aging and cancer.
Nat Genet. 2012 May 6;44(6):651-8. doi: 10.1038/ng.2270.
6
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
8
Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.
Cell. 2011 Sep 16;146(6):889-903. doi: 10.1016/j.cell.2011.07.042.
9
A comprehensive map of mobile element insertion polymorphisms in humans.
PLoS Genet. 2011 Aug;7(8):e1002236. doi: 10.1371/journal.pgen.1002236. Epub 2011 Aug 18.
10
inGAP-sv: a novel scheme to identify and visualize structural variation from paired end mapping data.
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W567-75. doi: 10.1093/nar/gkr506.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验