Suppr超能文献

CLOVE:将基因组融合分类为结构变异事件。

CLOVE: classification of genomic fusions into structural variation events.

作者信息

Schröder Jan, Wirawan Adrianto, Schmidt Bertil, Papenfuss Anthony T

机构信息

Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.

Department of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia.

出版信息

BMC Bioinformatics. 2017 Jul 20;18(1):346. doi: 10.1186/s12859-017-1760-3.

Abstract

BACKGROUND

A precise understanding of structural variants (SVs) in DNA is important in the study of cancer and population diversity. Many methods have been designed to identify SVs from DNA sequencing data. However, the problem remains challenging because existing approaches suffer from low sensitivity, precision, and positional accuracy. Furthermore, many existing tools only identify breakpoints, and so not collect related breakpoints and classify them as a particular type of SV. Due to the rapidly increasing usage of high throughput sequencing technologies in this area, there is an urgent need for algorithms that can accurately classify complex genomic rearrangements (involving more than one breakpoint or fusion).

RESULTS

We present CLOVE, an algorithm for integrating the results of multiple breakpoint or SV callers and classifying the results as a particular SV. CLOVE is based on a graph data structure that is created from the breakpoint information. The algorithm looks for patterns in the graph that are characteristic of more complex rearrangement types. CLOVE is able to integrate the results of multiple callers, producing a consensus call.

CONCLUSIONS

We demonstrate using simulated and real data that re-classified SV calls produced by CLOVE improve on the raw call set of existing SV algorithms, particularly in terms of accuracy. CLOVE is freely available from http://www.github.com/PapenfussLab .

摘要

背景

准确理解DNA中的结构变异(SVs)在癌症研究和群体多样性研究中至关重要。已经设计了许多方法来从DNA测序数据中识别SVs。然而,这个问题仍然具有挑战性,因为现有方法存在灵敏度低、精度低和位置准确性差的问题。此外,许多现有工具仅识别断点,因此无法收集相关断点并将其分类为特定类型的SV。由于该领域高通量测序技术的使用迅速增加,迫切需要能够准确分类复杂基因组重排(涉及多个断点或融合)的算法。

结果

我们提出了CLOVE,一种用于整合多个断点或SV调用者的结果并将结果分类为特定SV的算法。CLOVE基于从断点信息创建的图数据结构。该算法在图中寻找更复杂重排类型所特有的模式。CLOVE能够整合多个调用者的结果,产生一个一致的调用。

结论

我们使用模拟数据和真实数据证明,CLOVE产生的重新分类的SV调用在现有SV算法的原始调用集基础上有所改进,特别是在准确性方面。CLOVE可从http://www.github.com/PapenfussLab免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/079b/5520322/36f7146b7d3e/12859_2017_1760_Fig1_HTML.jpg

相似文献

1
CLOVE: classification of genomic fusions into structural variation events.
BMC Bioinformatics. 2017 Jul 20;18(1):346. doi: 10.1186/s12859-017-1760-3.
2
svclassify: a method to establish benchmark structural variant calls.
BMC Genomics. 2016 Jan 16;17:64. doi: 10.1186/s12864-016-2366-2.
3
4
Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing.
Genome Biol. 2019 Jun 3;20(1):117. doi: 10.1186/s13059-019-1720-5.
5
PostSV: A Post-Processing Approach for Filtering Structural Variations.
Bioinform Biol Insights. 2020 Jan 20;14:1177932219892957. doi: 10.1177/1177932219892957. eCollection 2020.
6
7
SV-STAT accurately detects structural variation via alignment to reference-based assemblies.
Source Code Biol Med. 2016 Jun 18;11:8. doi: 10.1186/s13029-016-0051-0. eCollection 2016.
8
Evaluating nanopore sequencing data processing pipelines for structural variation identification.
Genome Biol. 2019 Nov 14;20(1):237. doi: 10.1186/s13059-019-1858-1.
9
RAPTR-SV: a hybrid method for the detection of structural variants.
Bioinformatics. 2015 Jul 1;31(13):2084-90. doi: 10.1093/bioinformatics/btv086. Epub 2015 Feb 16.
10
PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants.
Bioinformatics. 2012 Oct 15;28(20):2576-83. doi: 10.1093/bioinformatics/bts484. Epub 2012 Jul 31.

引用本文的文献

1
PerSVade: personalized structural variant detection in any species of interest.
Genome Biol. 2022 Aug 16;23(1):175. doi: 10.1186/s13059-022-02737-4.
2
Using genomics to understand the mechanisms of virulence and drug resistance in fungal pathogens.
Biochem Soc Trans. 2022 Jun 30;50(3):1259-1268. doi: 10.1042/BST20211123.
3
Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata.
Curr Biol. 2021 Dec 6;31(23):5314-5326.e10. doi: 10.1016/j.cub.2021.09.084. Epub 2021 Oct 25.
4
A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
Genome Med. 2020 Jul 31;12(1):67. doi: 10.1186/s13073-020-00762-1.

本文引用的文献

2
An integrated map of structural variation in 2,504 human genomes.
Nature. 2015 Oct 1;526(7571):75-81. doi: 10.1038/nature15394.
3
Improving the Power of Structural Variation Detection by Augmenting the Reference.
PLoS One. 2015 Aug 31;10(8):e0136771. doi: 10.1371/journal.pone.0136771. eCollection 2015.
4
MetaSV: an accurate and integrative structural-variant caller for next generation sequencing.
Bioinformatics. 2015 Aug 15;31(16):2741-4. doi: 10.1093/bioinformatics/btv204. Epub 2015 Apr 10.
5
SimSeq: a nonparametric approach to simulation of RNA-sequence datasets.
Bioinformatics. 2015 Jul 1;31(13):2131-40. doi: 10.1093/bioinformatics/btv124. Epub 2015 Feb 26.
6
The architecture and evolution of cancer neochromosomes.
Cancer Cell. 2014 Nov 10;26(5):653-67. doi: 10.1016/j.ccell.2014.09.010.
7
Comprehensive characterization of complex structural variations in cancer by directly comparing genome sequence reads.
Nat Biotechnol. 2014 Nov;32(11):1106-12. doi: 10.1038/nbt.3027. Epub 2014 Oct 26.
8
Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
Bioinformatics. 2014 Dec 15;30(24):3484-90. doi: 10.1093/bioinformatics/btu431. Epub 2014 Jul 14.
9
Socrates: identification of genomic rearrangements in tumour genomes by re-aligning soft clipped reads.
Bioinformatics. 2014 Apr 15;30(8):1064-1072. doi: 10.1093/bioinformatics/btt767. Epub 2014 Jan 2.
10
PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data.
PLoS One. 2013 May 21;8(5):e63377. doi: 10.1371/journal.pone.0063377. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验