IMEP-LAHC (UMR CNRS/INPG/UJF 5130), Grenoble INP, Minatec, 3, Parvis Louis Néel, BP 257, F-38016 Grenoble, France.
Phys Rev Lett. 2013 May 10;110(19):196601. doi: 10.1103/PhysRevLett.110.196601. Epub 2013 May 7.
The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.
利用 Kubo 和 Landauer 输运计算研究了缺陷诱导的零能模式对石墨烯中电荷输运的作用。通过调节单空位随机分布的密度,无论是均匀占据两个子晶格还是仅位于单个子晶格上,都涵盖了从直接隧穿到体无序石墨烯中的瞬逝模式的介观输运的所有传导机制。根据输运测量的几何形状、缺陷密度和子晶格对称性,狄拉克点电导率要么对无序具有异常的鲁棒性(超金属态),要么通过能隙打开或零能模式的代数局域化来抑制,而对于更高的能量,则得到弱局域化和安德森绝缘态。这些发现澄清了零能模式对狄拉克点输运的贡献,这一问题迄今仍有争议。