Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure-activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R(2)=0.71, STL R(2)=0.73). For ERβ binding affinity, MTL models were significantly more predictive (R(2)=0.53, p<0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation.
鉴定内分泌干扰化学物质是环境化学危害筛选的重要目标之一。我们报告了开发验证过的计算机预测模型的进展,这些模型可用于预测具有雌激素受体 (ER) 介导的内分泌干扰潜力的化学物质,以促进它们在未来筛选中的优先排序。我们构建了一个包含大量 ERα 和/或 ERβ 配体相对结合亲和力的数据库(ERα 为 546 个,ERβ 为 137 个)。我们为预测配体与 ERα 或 ERβ 的结合亲和力开发了单任务学习 (STL) 和多任务学习 (MTL) 连续定量构效关系 (QSAR) 模型。ERα 结合亲和力的预测精度很高(MTL R²=0.71,STL R²=0.73)。对于 ERβ 结合亲和力,MTL 模型的预测能力明显优于 STL 模型(R²=0.53,p<0.05)。此外,我们使用从蛋白质数据库中检索到的以下 ER 结构(与各自的配体结合)对一组 ER 激动剂/拮抗剂(ERα 为 67 个激动剂和 39 个拮抗剂,ERβ 为 48 个激动剂和 32 个拮抗剂,补充了假定的非配体/非结合物)进行了对接研究:ERα 激动剂(PDB ID:1L2I)、ERα 拮抗剂(PDB ID:3DT3)、ERβ 激动剂(PDB ID:2NV7)和 ERβ 拮抗剂(PDB ID:1L2J)。我们发现,所有四种 ER 构象都可以将其相应的配体与假定的非配体区分开来。最后,我们将 QSAR 模型和 ER 结构并行用于虚拟筛选多个大型环境化学物质文库,得出基于配体和结构的推定雌激素化合物优先列表,用于体外和体内实验验证。