Suppr超能文献

采用 QSAR 和基于结构的虚拟筛选方法鉴定潜在的雌激素受体介导的内分泌干扰化学物质。

Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.

机构信息

Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.

Abstract

Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure-activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R(2)=0.71, STL R(2)=0.73). For ERβ binding affinity, MTL models were significantly more predictive (R(2)=0.53, p<0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation.

摘要

鉴定内分泌干扰化学物质是环境化学危害筛选的重要目标之一。我们报告了开发验证过的计算机预测模型的进展,这些模型可用于预测具有雌激素受体 (ER) 介导的内分泌干扰潜力的化学物质,以促进它们在未来筛选中的优先排序。我们构建了一个包含大量 ERα 和/或 ERβ 配体相对结合亲和力的数据库(ERα 为 546 个,ERβ 为 137 个)。我们为预测配体与 ERα 或 ERβ 的结合亲和力开发了单任务学习 (STL) 和多任务学习 (MTL) 连续定量构效关系 (QSAR) 模型。ERα 结合亲和力的预测精度很高(MTL R²=0.71,STL R²=0.73)。对于 ERβ 结合亲和力,MTL 模型的预测能力明显优于 STL 模型(R²=0.53,p<0.05)。此外,我们使用从蛋白质数据库中检索到的以下 ER 结构(与各自的配体结合)对一组 ER 激动剂/拮抗剂(ERα 为 67 个激动剂和 39 个拮抗剂,ERβ 为 48 个激动剂和 32 个拮抗剂,补充了假定的非配体/非结合物)进行了对接研究:ERα 激动剂(PDB ID:1L2I)、ERα 拮抗剂(PDB ID:3DT3)、ERβ 激动剂(PDB ID:2NV7)和 ERβ 拮抗剂(PDB ID:1L2J)。我们发现,所有四种 ER 构象都可以将其相应的配体与假定的非配体区分开来。最后,我们将 QSAR 模型和 ER 结构并行用于虚拟筛选多个大型环境化学物质文库,得出基于配体和结构的推定雌激素化合物优先列表,用于体外和体内实验验证。

相似文献

1
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
2
Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists.
BMC Bioinformatics. 2014;15 Suppl 11(Suppl 11):S4. doi: 10.1186/1471-2105-15-S11-S4. Epub 2014 Oct 21.
3
Endocrine-Disrupting Chemicals (EDCs): In Vitro Mechanism of Estrogenic Activation and Differential Effects on ER Target Genes.
Environ Health Perspect. 2013 Apr;121(4):459-66. doi: 10.1289/ehp.1205951. Epub 2013 Feb 5.
8
Predictive endocrine testing in the 21st century using in vitro assays of estrogen receptor signaling responses.
Environ Sci Technol. 2014;48(15):8706-16. doi: 10.1021/es502676e. Epub 2014 Jul 10.
9
Prediction of binding affinity and efficacy of thyroid hormone receptor ligands using QSAR and structure-based modeling methods.
Toxicol Appl Pharmacol. 2014 Oct 1;280(1):177-89. doi: 10.1016/j.taap.2014.07.009. Epub 2014 Jul 21.

引用本文的文献

1
Role of artificial intelligence in revolutionizing drug discovery.
Fundam Res. 2024 May 9;5(3):1273-1287. doi: 10.1016/j.fmre.2024.04.021. eCollection 2025 May.
2
Development of a comprehensive open access "molecules with androgenic activity resource (MAAR)" to facilitate risk assessment of chemicals.
Exp Biol Med (Maywood). 2024 Sep 19;249:10279. doi: 10.3389/ebm.2024.10279. eCollection 2024.
4
Overfit deep neural network for predicting drug-target interactions.
iScience. 2023 Aug 15;26(9):107646. doi: 10.1016/j.isci.2023.107646. eCollection 2023 Sep 15.
5
Data-Driven Quantitative Structure-Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure.
Environ Sci Technol. 2023 Apr 25;57(16):6573-6588. doi: 10.1021/acs.est.3c00648. Epub 2023 Apr 11.
6
Review of studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns.
Front Endocrinol (Lausanne). 2022 Sep 13;13:986016. doi: 10.3389/fendo.2022.986016. eCollection 2022.
7
Chemical space, diversity and activity landscape analysis of estrogen receptor binders.
RSC Adv. 2018 Nov 14;8(67):38229-38237. doi: 10.1039/c8ra07604a.
8
Web-Based Quantitative Structure-Activity Relationship Resources Facilitate Effective Drug Discovery.
Top Curr Chem (Cham). 2021 Sep 23;379(6):37. doi: 10.1007/s41061-021-00349-3.

本文引用的文献

1
Best Practices for QSAR Model Development, Validation, and Exploitation.
Mol Inform. 2010 Jul 12;29(6-7):476-88. doi: 10.1002/minf.201000061. Epub 2010 Jul 6.
2
Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
Environ Health Perspect. 2013 Jan;121(1):7-14. doi: 10.1289/ehp.1205065. Epub 2012 Sep 28.
3
Detection of endocrine disruptors - from simple assays to whole genome scanning.
Int J Androl. 2012 Jun;35(3):407-14. doi: 10.1111/j.1365-2605.2012.01254.x. Epub 2012 Mar 19.
4
ChEMBL: a large-scale bioactivity database for drug discovery.
Nucleic Acids Res. 2012 Jan;40(Database issue):D1100-7. doi: 10.1093/nar/gkr777. Epub 2011 Sep 23.
5
Recent advances in the molecular modeling of estrogen receptor-mediated toxicity.
Adv Protein Chem Struct Biol. 2011;85:217-51. doi: 10.1016/B978-0-12-386485-7.00006-5.
6
Endocrine disrupting chemicals and disease susceptibility.
J Steroid Biochem Mol Biol. 2011 Nov;127(3-5):204-15. doi: 10.1016/j.jsbmb.2011.08.007. Epub 2011 Aug 27.
7
Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010.
Arch Toxicol. 2011 May;85(5):367-485. doi: 10.1007/s00204-011-0693-2. Epub 2011 May 1.
8
Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action.
Chem Res Toxicol. 2011 Jan 14;24(1):6-19. doi: 10.1021/tx100231n. Epub 2010 Nov 5.
9
SAR/QSAR methods in public health practice.
Toxicol Appl Pharmacol. 2011 Jul 15;254(2):192-7. doi: 10.1016/j.taap.2010.10.017. Epub 2010 Oct 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验