Suppr超能文献

用于预测药物-靶点相互作用的过拟合深度神经网络。

Overfit deep neural network for predicting drug-target interactions.

作者信息

Xiaolin Xiao, Xiaozhi Liu, Guoping He, Hongwei Liu, Jinkuo Guo, Xiyun Bian, Zhen Tian, Xiaofang Ma, Yanxia Li, Na Xue, Chunyan Zhang, Rui Gao, Kuan Wang, Cheng Zhang, Cuancuan Wang, Mingyong Liu, Xinping Du

机构信息

Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China.

Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China.

出版信息

iScience. 2023 Aug 15;26(9):107646. doi: 10.1016/j.isci.2023.107646. eCollection 2023 Sep 15.

Abstract

Drug-target interactions (DTIs) prediction is an important step in drug discovery. As traditional biological experiments or high-throughput screening are high cost and time-consuming, many deep learning models have been developed. Overfitting must be avoided when training deep learning models. We propose a simple framework, called OverfitDTI, for DTI prediction. In OverfitDTI, a deep neural network (DNN) model is overfit to sufficiently learn the features of the chemical space of drugs and the biological space of targets. The weights of trained DNN model form an implicit representation of the nonlinear relationship between drugs and targets. Performance of OverfitDTI on three public datasets showed that the overfit DNN models fit the nonlinear relationship with high accuracy. We identified fifteen compounds that interacted with TEK, a receptor tyrosine kinase contributing to vascular homeostasis, and the predicted AT9283 and dorsomorphin were experimentally demonstrated as inhibitors of TEK in human umbilical vein endothelial cells (HUVECs).

摘要

药物-靶点相互作用(DTIs)预测是药物研发中的重要一步。由于传统生物学实验或高通量筛选成本高且耗时,人们开发了许多深度学习模型。在训练深度学习模型时必须避免过拟合。我们提出了一个名为OverfitDTI的简单框架用于DTI预测。在OverfitDTI中,深度神经网络(DNN)模型进行过拟合以充分学习药物化学空间和靶点生物学空间的特征。训练后的DNN模型权重形成了药物与靶点之间非线性关系的隐式表示。OverfitDTI在三个公共数据集上的性能表明,过拟合的DNN模型能高精度地拟合非线性关系。我们鉴定出了15种与TEK(一种有助于血管稳态的受体酪氨酸激酶)相互作用的化合物,并且实验证明预测出的AT9283和dorsomorphin是人脐静脉内皮细胞(HUVECs)中TEK的抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验