State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
Anal Chim Acta. 2013 Jun 11;782:59-66. doi: 10.1016/j.aca.2013.04.025. Epub 2013 Apr 17.
An ultrasensitive fluorescence resonance energy transfer (FRET) bioassay was developed to detect staphylococcal enterotoxin B (SEB), a low molecular exotoxin, using an aptamer-affinity method coupled with upconversion nanoparticles (UCNPs)-sensing, and the fluorescence intensity was prominently enhanced using an exonuclease-catalyzed target recycling strategy. To construct this aptasensor, both fluorescence donor probes (complementary DNA1-UCNPs) and fluorescence quencher probes (complementary DNA2-Black Hole Quencher3 (BHQ3)) were hybridized to an SEB aptamer, and double-strand oligonucleotides were fabricated, which quenched the fluorescence of the UCNPs via FRET. The formation of an aptamer-SEB complex in the presence of the SEB analyte resulted in not only the dissociation of aptamer from the double-strand DNA but also both the disruption of the FRET system and the restoration of the UCNPs fluorescence. In addition, the SEB was liberated from the aptamer-SEB complex using exonuclease I, an exonuclease specific to single-stranded DNA, for analyte recycling by selectively digesting a particular DNA (SEB aptamer). Based on this exonuclease-catalyzed target recycling strategy, an amplified fluorescence intensity could be produced using different SEB concentrations. Using optimized experimental conditions produced an ultrasensitive aptasensor for the detection of SEB, with a wide linear range of 0.001-1 ng mL(-1) and a lower detection limit (LOD) of 0.3 pg mL(-1) SEB (at 3σ). The fabricated aptasensor was used to measure SEB in a real milk samples and validated using the ELISA method. Furthermore, a novel aptasensor FRET assay was established for the first time using 30 mol% Mn(2+) ions doped NaYF4:Yb/Er (20/2 mol%) UCNPs as the donor probes, which suggests that UCNPs are superior fluorescence labeling materials for food safety analysis.
建立了一种超灵敏的荧光共振能量转移(FRET)生物分析方法,用于检测低分子外毒素金黄色葡萄球菌肠毒素 B(SEB),该方法采用适体亲和法与上转换纳米粒子(UCNPs)传感相结合,并使用外切酶催化的靶标循环策略显著增强荧光强度。为了构建这种适体传感器,将荧光供体探针(互补 DNA1-UCNPs)和荧光猝灭探针(互补 DNA2-黑洞猝灭剂 3(BHQ3))与 SEB 适体杂交,形成双链寡核苷酸,通过 FRET 猝灭 UCNPs 的荧光。在 SEB 分析物存在下形成适体-SEB 复合物,不仅导致适体从双链 DNA 解离,而且还破坏 FRET 系统并恢复 UCNPs 荧光。此外,使用外切酶 I(一种专门针对单链 DNA 的外切酶)从适体-SEB 复合物中释放 SEB,通过选择性消化特定 DNA(SEB 适体)进行分析物循环利用。基于这种外切酶催化的靶标循环策略,可以使用不同的 SEB 浓度产生放大的荧光强度。在优化的实验条件下,该适体传感器对 SEB 的检测具有很宽的线性范围(0.001-1ngmL(-1))和较低的检测限(LOD)(0.3pgmL(-1)SEB(在 3σ 时))。该制备的适体传感器用于测量真实牛奶样品中的 SEB,并使用 ELISA 方法进行验证。此外,首次使用掺杂 30mol%Mn(2+)离子的 NaYF4:Yb/Er(20/2mol%)UCNPs 作为供体探针建立了一种新型的适体传感器 FRET 分析方法,这表明 UCNPs 是食品安全分析的优越荧光标记材料。