Suppr超能文献

[医学图像压缩:综述]

[Medical image compression: a review].

作者信息

Noreña Tatiana, Romero Eduardo

机构信息

Grupo de Investigación Bioingenium, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.

出版信息

Biomedica. 2013 Jan-Mar;33(1):137-51. doi: 10.1590/S0120-41572013000100017.

Abstract

Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

摘要

现代医学是一项日益复杂的活动,以证据为基础;它由多种来源的信息组成:病历文本、录音、由大量设备生成的图像和视频。医学成像作为最重要的信息来源之一,为诊断和随访等医疗程序提供全面支持。然而,图像捕捉设备生成的信息量迅速超过了放射科服务的存储容量,这使得存储容量更大的设备产生了额外成本。此外,尽管通过互联网连接可以从任何地方获得虚拟存储,但目前云计算应用开发的趋势仍存在局限性。在这些情况下,信息的优化利用必然需要适应医疗活动需求的强大压缩算法。在本文中,我们对用于图像存储的压缩技术进行了综述,并从其在临床环境中的应用角度对它们进行了批判性分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验