Nuclear Medicine Department, Lapeyronie University Hospital, 371 avenue du Doyen Gaston Giraud, F-34295 Montpellier Cedex 5, France.
Phys Med Biol. 2013 Jun 21;58(12):4175-94. doi: 10.1088/0031-9155/58/12/4175. Epub 2013 May 28.
Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.
我们的目的是描述一种用于估计发射断层成像中感兴趣区域(ROI)统计特性的新方法。受 Louis 关于近似逆的工作启发,我们提出了一种 ROI 估计问题的对偶公式,以便直接从测量数据中推导出 ROI 的活性和方差,而无需进行任何图像重建。该方法需要定义一个 ROI 特征函数,该函数可以从配准的形态图像中提取。这个特征函数可以进行平滑处理,以优化分辨率-方差的权衡。详细介绍了一种在最小二乘意义上求解对偶问题的迭代过程(最小二乘对偶(LSD)特征),并描述了一种线性外推方案,以补偿采样部分容积效应并降低估计偏差(LSD-ex)。LSD 和 LSD-ex 与经典 ROI 估计进行了比较,后者使用图像重建后的像素求和,以及 Huesman 方法。为了进行比较,我们使用包含三个小均匀高对比度 ROI 和一个大非均匀低对比度 ROI 的 Hoffman 脑模型的 2D PET 数据的蒙特卡罗模拟(GATE 模拟工具)。我们的结果表明,LSD 特征在均方根误差(RMS)方面的性能至少与经典方法一样好。对于三个小肿瘤区域,LSD-ex 可以将估计偏差降低最多 14%,与最佳经典估计相比,RMS 误差降低最多 8.5%。对于大的非特异性区域,使用适当平滑的 LSD 可以直观有效地处理分辨率-方差的权衡。