Suppr超能文献

基于吉布斯随机场和 Hopfield 型神经网络的集成模型在多时相遥感影像无监督变化检测中的应用

Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images.

机构信息

Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India.

出版信息

IEEE Trans Image Process. 2013 Aug;22(8):3087-96. doi: 10.1109/TIP.2013.2259833.

Abstract

In this paper, a spatiocontextual unsupervised change detection technique for multitemporal, multispectral remote sensing images is proposed. The technique uses a Gibbs Markov random field (GMRF) to model the spatial regularity between the neighboring pixels of the multitemporal difference image. The difference image is generated by change vector analysis applied to images acquired on the same geographical area at different times. The change detection problem is solved using the maximum a posteriori probability (MAP) estimation principle. The MAP estimator of the GMRF used to model the difference image is exponential in nature, thus a modified Hopfield type neural network (HTNN) is exploited for estimating the MAP. In the considered Hopfield type network, a single neuron is assigned to each pixel of the difference image and is assumed to be connected only to its neighbors. Initial values of the neurons are set by histogram thresholding. An expectation-maximization algorithm is used to estimate the GMRF model parameters. Experiments are carried out on three-multispectral and multitemporal remote sensing images. Results of the proposed change detection scheme are compared with those of the manual-trial-and-error technique, automatic change detection scheme based on GMRF model and iterated conditional mode algorithm, a context sensitive change detection scheme based on HTNN, the GMRF model, and a graph-cut algorithm. A comparison points out that the proposed method provides more accurate change detection maps than other methods.

摘要

本文提出了一种用于多时相、多光谱遥感图像的无监督空间上下文变化检测技术。该技术使用吉布斯随机场(GMRF)模型来模拟多时相差分图像中相邻像素之间的空间相关性。差分图像是通过在同一地理区域不同时间获取的图像应用变化向量分析生成的。利用最大后验概率(MAP)估计原理解决变化检测问题。用于对差分图像建模的 GMRF 的 MAP 估计器本质上是指数的,因此利用修改的霍普菲尔德型神经网络(HTNN)来估计 MAP。在所考虑的霍普菲尔德型网络中,为差分图像的每个像素分配一个神经元,并假设其仅与其邻居连接。神经元的初始值通过直方图阈值设置。使用期望最大化算法来估计 GMRF 模型参数。在三个多光谱和多时相遥感图像上进行了实验。将所提出的变化检测方案的结果与手动试错技术、基于 GMRF 模型和迭代条件模式算法的自动变化检测方案、基于 HTNN、GMRF 模型和图割算法的上下文敏感变化检测方案进行了比较。比较结果表明,与其他方法相比,该方法提供了更准确的变化检测图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验