Bricq S, Collet Ch, Armspach J P
Université Strasbourg I, LSIIT: UMR CNRS 7005, ENSPS/LSIIT, Pole API, Bd S. Brant, BP 10413 F-67412 Illkirch, France.
Med Image Anal. 2008 Dec;12(6):639-52. doi: 10.1016/j.media.2008.03.001. Epub 2008 Mar 17.
In the frame of 3D medical imaging, accurate segmentation of multimodal brain MR images is of interest for many brain disorders. However, due to several factors such as noise, imaging artifacts, intrinsic tissue variation and partial volume effects, tissue classification remains a challenging task. In this paper, we present a unifying framework for unsupervised segmentation of multimodal brain MR images including partial volume effect, bias field correction, and information given by a probabilistic atlas. Here-proposed method takes into account neighborhood information using a Hidden Markov Chain (HMC) model. Due to the limited resolution of imaging devices, voxels may be composed of a mixture of different tissue types, this partial volume effect is included to achieve an accurate segmentation of brain tissues. Instead of assigning each voxel to a single tissue class (i.e., hard classification), we compute the relative amount of each pure tissue class in each voxel (mixture estimation). Further, a bias field estimation step is added to the proposed algorithm to correct intensity inhomogeneities. Furthermore, atlas priors were incorporated using probabilistic brain atlas containing prior expectations about the spatial localization of different tissue classes. This atlas is considered as a complementary sensor and the proposed method is extended to multimodal brain MRI without any user-tunable parameter (unsupervised algorithm). To validate this new unifying framework, we present experimental results on both synthetic and real brain images, for which the ground truth is available. Comparison with other often used techniques demonstrates the accuracy and the robustness of this new Markovian segmentation scheme.
在三维医学成像框架下,准确分割多模态脑磁共振图像对于许多脑部疾病研究具有重要意义。然而,由于噪声、成像伪影、内在组织变异和部分容积效应等多种因素,组织分类仍然是一项具有挑战性的任务。在本文中,我们提出了一个统一框架,用于多模态脑磁共振图像的无监督分割,该框架包括部分容积效应、偏置场校正以及概率图谱提供的信息。本文提出的方法使用隐马尔可夫链(HMC)模型考虑邻域信息。由于成像设备分辨率有限,体素可能由不同组织类型混合组成,因此纳入部分容积效应以实现脑组织的准确分割。我们不是将每个体素分配到单一组织类别(即硬分类),而是计算每个体素中各纯组织类别的相对含量(混合估计)。此外,在所提出的算法中增加了偏置场估计步骤以校正强度不均匀性。此外,利用包含不同组织类别空间定位先验期望的概率性脑图谱纳入图谱先验信息。该图谱被视为一种补充传感器,并且所提出的方法被扩展为无需任何用户可调参数的多模态脑磁共振成像方法(无监督算法)。为了验证这个新的统一框架,我们给出了在合成脑图像和真实脑图像上的实验结果,这些图像都有真实标注。与其他常用技术的比较证明了这种新的马尔可夫分割方案的准确性和鲁棒性。