Suppr超能文献

随机动力学模型的模拟

Simulation of stochastic kinetic models.

作者信息

Golightly Andrew, Gillespie Colin S

机构信息

School of Mathematics Statistics, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Methods Mol Biol. 2013;1021:169-87. doi: 10.1007/978-1-62703-450-0_9.

Abstract

A growing realization of the importance of stochasticity in cell and molecular processes has stimulated the need for statistical models that incorporate intrinsic (and extrinsic) variability. In this chapter we consider stochastic kinetic models of reaction networks leading to a Markov jump process representation of a system of interest. Traditionally, the stochastic model is characterized by a chemical master equation. While the intractability of such models can preclude a direct analysis, simulation can be straightforward and may present the only practical approach to gaining insight into a system's dynamics. We review exact simulation procedures before considering some efficient approximate alternatives.

摘要

对细胞和分子过程中随机性重要性的日益认识,激发了对纳入内在(和外在)变异性的统计模型的需求。在本章中,我们考虑反应网络的随机动力学模型,从而得到感兴趣系统的马尔可夫跳跃过程表示。传统上,随机模型由化学主方程来表征。虽然这类模型的难解性可能妨碍直接分析,但模拟可能很直接,并且可能是深入了解系统动力学的唯一实用方法。在考虑一些有效的近似替代方法之前,我们先回顾精确模拟程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验