Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India.
Chemistry. 2013 Jul 8;19(28):9335-42. doi: 10.1002/chem.201300145. Epub 2013 May 28.
The facile synthesis of a porous carbon material that is doped with iron-coordinated nitrogen active sites (FeNC-70) is demonstrated by following an inexpensive synthetic pathway with a zeolitic imidazolate framework (ZIF-70) as a template. To emphasize the possibility of tuning the porosity and surface area of the resulting carbon materials based on the structure of the parent ZIF, two other ZIFs, that is, ZIF-68 and ZIF-69, are also synthesized. The resulting active carbon material that is derived from ZIF-70, that is, FeNC-70, exhibits the highest BET surface area of 262 m(2) g(-1) compared to the active carbon materials that are derived from ZIF-68 and ZIF-69. The HR-TEM images of FeNC-70 show that the carbon particles have a bimodal structure that is composed of a spherical macroscopic pore (about 200 nm) and a mesoporous shell. X-ray photoelectron spectroscopy (XPS) reveals the presence of Fe-N-C moieties, which are the primary active sites for the oxygen-reduction reaction (ORR). Quantitative estimation by using EDAX analysis reveals a nitrogen content of 14.5 wt.%, along with trace amounts of iron (0.1 wt.%), in the active FeNC-70 catalyst. This active porous carbon material, which is enriched with Fe-N-C moieties, reduces the oxygen molecule with an onset potential at 0.80 V versus NHE through a pathway that involves 3.3-3.8 e(-) under acidic conditions, which is much closer to the favored 4 e(-) pathway for the ORR. The onset potential of FeNC-70 is significantly higher than those of its counterparts (FeNC-68 and FeNC-69) and of other reported systems. The FeNC-based systems also exhibit much-higher tolerance towards MeOH oxidation and electrochemical stability during an accelerated durability test (ADT). Electrochemical analysis and structural characterizations predict that the active sites for the ORR are most likely to be the in situ generated N-FeN(2+2)/C moieties, which are distributed along the carbon framework.
通过以沸石咪唑酯骨架(ZIF-70)为模板的廉价合成途径,证明了一种富铁配位氮活性位(FeNC-70)的多孔碳材料的简便合成。为了强调根据母体 ZIF 的结构来调整所得碳材料的孔隙率和表面积的可能性,还合成了另外两种 ZIF,即 ZIF-68 和 ZIF-69。源自 ZIF-70 的所得活性碳材料,即 FeNC-70,与源自 ZIF-68 和 ZIF-69 的活性碳材料相比,表现出最高的 262 m(2) g(-1) 的 BET 表面积。FeNC-70 的高分辨率透射电子显微镜(HR-TEM)图像显示,碳颗粒具有双模态结构,由球形宏观孔(约 200nm)和中孔壳组成。X 射线光电子能谱(XPS)表明存在 Fe-N-C 基团,这是氧还原反应(ORR)的主要活性位。通过使用 EDAX 分析进行定量估计,在活性 FeNC-70 催化剂中发现氮含量为 14.5wt.%,同时还存在痕量的铁(0.1wt.%)。这种富含 Fe-N-C 基团的活性多孔碳材料通过在酸性条件下涉及 3.3-3.8 e(-)的途径还原氧分子,其起始电位在 0.80 V 相对于 NHE,这更接近 ORR 的优选 4 e(-)途径。FeNC-70 的起始电位明显高于其对应物(FeNC-68 和 FeNC-69)和其他报道的系统。FeNC 基系统在加速耐久性测试(ADT)期间对甲醇氧化和电化学稳定性也表现出更高的耐受性。电化学分析和结构表征表明,ORR 的活性位很可能是原位生成的 N-FeN(2+2)/C 基团,它们沿碳骨架分布。