Schneider Rainer, Ritter Dieter, Haueisen Jens, Pfeuffer Josef
MR Application Development, Siemens Healthcare, Erlangen, Germany; Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany.
Magn Reson Med. 2014 Apr;71(4):1381-93. doi: 10.1002/mrm.24780. Epub 2013 May 28.
To improve B1 and B0 inhomogeneity mitigation performance of spatially selective radio-frequency (RF) pulses in parallel transmission while decreasing RF pulse power. Further enhancement of off-resonance correction for rectilinear spoke-trajectory-based RF pulses with known residual geometric distortions after optimization.
The appropriate definition of the target magnetization pattern is discussed regarding the maximum physical excitation resolution. Furthermore, a novel variable-density trajectory design is introduced, which subsamples accrued B0 phase error elevations in k-space. A simulation study (echo-planar and spiral 2DRF) at different off-resonance levels and pulse acceleration factors was pursued using data from a whole-body 2-channel parallel transmit 3T MRI system. The new trajectory design for echo-planar 2DRF was validated in human in-vivo experiments.
Proper target pattern definition can require spatial filtering, such that RF pulse optimization is prevented from lower excitation performance with significant higher RF power level. The new trajectory design proposed can considerably improve off-resonance compensation, while further reducing the RF power, e.g., 43% less RMSE with 79% less RF power for spoke based pulses.
The proposed methods offer significant improvements of the excitation performance (homogeneity and acceleration), while significantly decreasing the RF power. Furthermore, single-channel transmit RF pulse performance can be similarly improved.
在降低射频(RF)脉冲功率的同时,提高并行传输中空间选择性RF脉冲的B1和B0不均匀性缓解性能。进一步增强基于直线辐条轨迹的RF脉冲在优化后已知残留几何畸变情况下的失谐校正。
讨论了关于最大物理激发分辨率的目标磁化模式的适当定义。此外,引入了一种新颖的可变密度轨迹设计,该设计对k空间中累积的B0相位误差升高进行欠采样。使用来自全身2通道并行发射3T MRI系统的数据,在不同失谐水平和脉冲加速因子下进行了模拟研究(回波平面和螺旋2D RF)。回波平面2D RF的新轨迹设计在人体体内实验中得到了验证。
正确的目标模式定义可能需要空间滤波,从而防止RF脉冲优化在显著更高的RF功率水平下具有较低的激发性能。所提出的新轨迹设计可以显著改善失谐补偿,同时进一步降低RF功率,例如,基于辐条的脉冲的均方根误差降低43%,RF功率降低79%。
所提出的方法在显著降低RF功率的同时,显著提高了激发性能(均匀性和加速)。此外,单通道发射RF脉冲性能也可以得到类似的改善。