Suppr超能文献

从下丘脑中到不同听觉皮层层的神经整合和增强。

Neural integration and enhancement from the inferior colliculus up to different layers of auditory cortex.

机构信息

Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA.

出版信息

J Neurophysiol. 2013 Aug;110(4):1009-20. doi: 10.1152/jn.00022.2013. Epub 2013 May 29.

Abstract

While the cochlear implant has successfully restored hearing to many deaf patients, it cannot benefit those without a functional auditory nerve or an implantable cochlea. As an alternative, the auditory midbrain implant (AMI) has been developed and implanted into deaf patients. Consisting of a single-shank array, the AMI is designed for stimulation along the tonotopic gradient of the inferior colliculus (ICC). Although the AMI can provide frequency cues, it appears to insufficiently transmit temporal cues for speech understanding because repeated stimulation of a single site causes strong suppressive and refractory effects. Applying the electrical stimulation to at least two sites within an isofrequency lamina can circumvent these refractory processes. Moreover, coactivation with short intersite delays (<5 ms) can elicit cortical activation which is enhanced beyond the summation of activity induced by the individual sites. The goal of our study was to further investigate the role of the auditory cortex in this enhancement effect. In guinea pigs, we electrically stimulated two locations within an ICC lamina or along different laminae with varying interpulse intervals (0-10 ms) and recorded activity in different locations and layers of primary auditory cortex (A1). Our findings reveal a neural mechanism that integrates activity only from neurons located within the same ICC lamina for short spiking intervals (<6 ms). This mechanism leads to enhanced activity into layers III-V of A1 that is further magnified in supragranular layers. This integration mechanism may contribute to perceptual coding of different sound features that are relevant for improving AMI performance.

摘要

虽然人工耳蜗已经成功地为许多失聪患者恢复了听力,但它对没有功能听觉神经或可植入耳蜗的患者没有帮助。作为替代方案,听觉中脑植入物(AMI)已经开发并植入到失聪患者中。AMI 由单根阵列组成,旨在沿着下丘的音调梯度进行刺激。尽管 AMI 可以提供频率线索,但它似乎不足以传递语音理解所需的时间线索,因为单个部位的重复刺激会引起强烈的抑制和不应期效应。在同频层内的至少两个部位施加电刺激可以避免这些不应期过程。此外,短的部位间延迟(<5ms)的共激活可以引发皮层激活,其增强超过单个部位引起的活动的总和。我们的研究目的是进一步研究听觉皮层在这种增强效应中的作用。在豚鼠中,我们用电刺激 ICC 层内的两个位置或沿着不同的层以不同的脉冲间间隔(0-10ms)刺激,并记录初级听觉皮层(A1)的不同位置和层中的活动。我们的发现揭示了一种神经机制,该机制仅整合来自同一 ICC 层内神经元的活动,用于短的脉冲间隔(<6ms)。这种机制导致 A1 的第三到第五层的活动增强,在颗粒层以上进一步放大。这种整合机制可能有助于不同声音特征的感知编码,这对于改善 AMI 的性能很重要。

相似文献

1
Neural integration and enhancement from the inferior colliculus up to different layers of auditory cortex.
J Neurophysiol. 2013 Aug;110(4):1009-20. doi: 10.1152/jn.00022.2013. Epub 2013 May 29.
4
Neural representation in the auditory midbrain of the envelope of vocalizations based on a peripheral ear model.
Front Neural Circuits. 2013 Oct 21;7:166. doi: 10.3389/fncir.2013.00166. eCollection 2013.
7
Electrophysiological validation of a human prototype auditory midbrain implant in a guinea pig model.
J Assoc Res Otolaryngol. 2006 Dec;7(4):383-98. doi: 10.1007/s10162-006-0056-5. Epub 2006 Oct 31.
9
Descending and tonotopic projection patterns from the auditory cortex to the inferior colliculus.
Neuroscience. 2015 Aug 6;300:325-37. doi: 10.1016/j.neuroscience.2015.05.032. Epub 2015 May 19.

引用本文的文献

1
Pairing broadband noise with cortical stimulation induces extensive suppression of ascending sensory activity.
J Neural Eng. 2015 Apr;12(2):026006. doi: 10.1088/1741-2560/12/2/026006. Epub 2015 Feb 16.
2
Auditory midbrain implant: research and development towards a second clinical trial.
Hear Res. 2015 Apr;322:212-23. doi: 10.1016/j.heares.2015.01.006. Epub 2015 Jan 20.
4
Response features across the auditory midbrain reveal an organization consistent with a dual lemniscal pathway.
J Neurophysiol. 2014 Aug 15;112(4):981-98. doi: 10.1152/jn.00008.2014. Epub 2014 May 14.

本文引用的文献

2
Temporal processing in the auditory system: insights from cochlear and auditory midbrain implantees.
J Assoc Res Otolaryngol. 2013 Feb;14(1):103-24. doi: 10.1007/s10162-012-0354-z. Epub 2012 Oct 17.
3
Auditory brainstem implants for neurofibromatosis type 2.
Curr Opin Otolaryngol Head Neck Surg. 2012 Oct;20(5):353-7. doi: 10.1097/MOO.0b013e328357613d.
4
Thalamic and cortical pathways supporting auditory processing.
Brain Lang. 2013 Jul;126(1):22-8. doi: 10.1016/j.bandl.2012.05.004. Epub 2012 Jun 23.
5
Precise feature based time scales and frequency decorrelation lead to a sparse auditory code.
J Neurosci. 2012 Jun 20;32(25):8454-68. doi: 10.1523/JNEUROSCI.6506-11.2012.
7
Unanesthetized auditory cortex exhibits multiple codes for gaps in cochlear implant pulse trains.
J Assoc Res Otolaryngol. 2012 Feb;13(1):67-80. doi: 10.1007/s10162-011-0293-0. Epub 2011 Oct 4.
8
Fine frequency tuning in monkey auditory cortex and thalamus.
J Neurophysiol. 2011 Aug;106(2):849-59. doi: 10.1152/jn.00559.2010. Epub 2011 May 25.
9
10
Profound deafness in childhood.
N Engl J Med. 2010 Oct 7;363(15):1438-50. doi: 10.1056/NEJMra0911225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验