Suppr超能文献

用于表征髌股压力分布的离散元分析:模型评估

Discrete element analysis for characterizing the patellofemoral pressure distribution: model evaluation.

作者信息

Elias John J, Saranathan Archana

机构信息

Calhoun Research Laboratory, Akron General Medical Center, 400 Wabash Avenue, Akron, OH 44307, USA.

出版信息

J Biomech Eng. 2013 Aug;135(8):81011. doi: 10.1115/1.4024287.

Abstract

The current study was performed to evaluate the accuracy of computational assessment of the influence of the orientation of the patellar tendon on the patellofemoral pressure distribution. Computational models were created to represent eight knees previously tested at 40 deg, 60 deg, and 80 deg of flexion to evaluate the influence of hamstrings loading on the patellofemoral pressure distribution. Hamstrings loading increased the lateral and posterior orientation of the patellar tendon, with the change for each test determined from experimentally measured variations in tibiofemoral alignment. The patellar tendon and the cartilage on the femur and patella were represented with springs. After loading the quadriceps, the total potential energy was minimized to determine the force within the patellar tendon. The forces applied by the quadriceps and patellar tendon produced patellar translation and rotation. The deformation of each cartilage spring was determined from overlap of the cartilage surfaces on the femur and patella and related to force using linear elastic theory. The patella was iteratively adjusted until the extension moment, tilt moment, compression, and lateral force acting on the patella were in equilibrium. For the maximum pressure applied to lateral cartilage and the ratio of the lateral compression to the total compression, paired t-tests were performed at each flexion angle to determine if the output varied significantly (p < 0.05) between the two loading conditions. For both the computational and experimental data, loading the hamstrings significantly increased the lateral force ratio and the maximum lateral pressure at multiple flexion angles. For the computational data, loading the hamstrings increased the average lateral force ratio and maximum lateral pressure by approximately 0.04 and 0.3 MPa, respectively, compared to experimental increases of 0.06 and 0.4 MPa, respectively. The computational modeling technique accurately characterized variations in the patellofemoral pressure distribution caused by altering the orientation of the patellar tendon.

摘要

本研究旨在评估计算评估髌腱方向对髌股压力分布影响的准确性。创建了计算模型来代表先前在40度、60度和80度屈曲角度下测试的八个膝关节,以评估腘绳肌负荷对髌股压力分布的影响。腘绳肌负荷增加了髌腱的外侧和后侧方向,每次测试的变化由胫股对线的实验测量变化确定。髌腱以及股骨和髌骨上的软骨用弹簧表示。加载股四头肌后,将总势能最小化以确定髌腱内的力。股四头肌和髌腱施加的力产生了髌骨的平移和旋转。每个软骨弹簧的变形由股骨和髌骨上软骨表面的重叠确定,并使用线性弹性理论与力相关。反复调整髌骨,直到作用在髌骨上的伸展力矩、倾斜力矩、压缩力和侧向力达到平衡。对于施加在外侧软骨上的最大压力以及外侧压缩与总压缩的比率,在每个屈曲角度进行配对t检验,以确定两种加载条件下的输出是否有显著差异(p < 0.05)。对于计算数据和实验数据,加载腘绳肌在多个屈曲角度均显著增加了侧向力比率和最大外侧压力。对于计算数据,加载腘绳肌使平均侧向力比率和最大外侧压力分别增加了约0.04和0.3 MPa,相比之下,实验增加量分别为0.06和0.4 MPa。计算建模技术准确地表征了因改变髌腱方向而导致的髌股压力分布变化。

相似文献

2
Finite element analysis to characterize how varying patellar loading influences pressure applied to cartilage: model evaluation.
Comput Methods Biomech Biomed Engin. 2015;18(14):1509-15. doi: 10.1080/10255842.2014.921814. Epub 2014 May 29.
3
Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study.
Clin Biomech (Bristol). 2011 Oct;26(8):841-6. doi: 10.1016/j.clinbiomech.2011.03.016. Epub 2011 May 4.
4
Subject-specific evaluation of patellofemoral joint biomechanics during functional activity.
Med Eng Phys. 2014 Sep;36(9):1122-33. doi: 10.1016/j.medengphy.2014.06.009. Epub 2014 Jul 3.
6
Evaluation of a computational model used to predict the patellofemoral contact pressure distribution.
J Biomech. 2004 Mar;37(3):295-302. doi: 10.1016/s0021-9290(03)00306-3.
7
In vivo kinematics of the extensor mechanism of the knee during deep flexion.
J Biomech Eng. 2013 Aug;135(8):81002. doi: 10.1115/1.4024284.
9
The effects of the sagittal plane malpositioning of the patella and concomitant quadriceps hypotrophy on the patellofemoral joint: a finite element analysis.
Knee Surg Sports Traumatol Arthrosc. 2016 Mar;24(3):903-8. doi: 10.1007/s00167-014-3421-7. Epub 2014 Nov 15.
10
Computational modeling: an alternative approach for investigating patellofemoral mechanics.
Sports Med Arthrosc Rev. 2007 Jun;15(2):89-94. doi: 10.1097/JSA.0b013e31804bbe4d.

引用本文的文献

1
The non-invasive evaluation technique of patellofemoral joint stress: a systematic literature review.
Front Bioeng Biotechnol. 2023 Jun 29;11:1197014. doi: 10.3389/fbioe.2023.1197014. eCollection 2023.
3
Development and validation of a kinematically-driven discrete element model of the patellofemoral joint.
J Biomech. 2019 May 9;88:164-172. doi: 10.1016/j.jbiomech.2019.03.032. Epub 2019 Mar 28.
4
Computational simulation of medial versus anteromedial tibial tuberosity transfer for patellar instability.
J Orthop Res. 2018 Dec;36(12):3231-3238. doi: 10.1002/jor.24108. Epub 2018 Aug 2.
6
Biomechanical Analysis of Tibial Tuberosity Medialization and Medial Patellofemoral Ligament Reconstruction.
Sports Med Arthrosc Rev. 2017 Jun;25(2):58-63. doi: 10.1097/JSA.0000000000000152.
7
Dynamic Simulation of the Effects of Graft Fixation Errors During Medial Patellofemoral Ligament Reconstruction.
Orthop J Sports Med. 2016 Sep 20;4(9):2325967116665080. doi: 10.1177/2325967116665080. eCollection 2016 Sep.
8
Does Patella Tendon Tenodesis Improve Tibial Tubercle Distalization in Treating Patella Alta? A Computational Study.
Clin Orthop Relat Res. 2016 Nov;474(11):2451-2461. doi: 10.1007/s11999-016-5027-5. Epub 2016 Aug 30.
9
Biphasic Analysis of Cartilage Stresses in the Patellofemoral Joint.
J Knee Surg. 2016 Feb;29(2):92-8. doi: 10.1055/s-0035-1568989. Epub 2015 Dec 7.

本文引用的文献

1
The effect of tibial tuberosity realignment procedures on the patellofemoral pressure distribution.
Knee Surg Sports Traumatol Arthrosc. 2012 Oct;20(10):2054-61. doi: 10.1007/s00167-011-1802-8. Epub 2011 Dec 2.
2
Development of a statistical shape model of the patellofemoral joint for investigating relationships between shape and function.
J Biomech. 2011 Sep 2;44(13):2446-52. doi: 10.1016/j.jbiomech.2011.06.025. Epub 2011 Jul 30.
3
Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete.
Am J Sports Med. 2011 Aug;39(8):1756-61. doi: 10.1177/0363546511404883. Epub 2011 May 12.
4
Hamstrings loading contributes to lateral patellofemoral malalignment and elevated cartilage pressures: an in vitro study.
Clin Biomech (Bristol). 2011 Oct;26(8):841-6. doi: 10.1016/j.clinbiomech.2011.03.016. Epub 2011 May 4.
5
Tibial tuberosity osteotomy for patellofemoral realignment alters tibiofemoral kinematics.
Am J Sports Med. 2011 May;39(5):1024-31. doi: 10.1177/0363546510390188. Epub 2011 Jan 13.
6
Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study.
Osteoarthritis Cartilage. 2011 Mar;19(3):287-94. doi: 10.1016/j.joca.2010.12.001. Epub 2010 Dec 21.
7
Computationally efficient finite element evaluation of natural patellofemoral mechanics.
J Biomech Eng. 2010 Dec;132(12):121013. doi: 10.1115/1.4002854.
8
In-vivo time-dependent articular cartilage contact behavior of the tibiofemoral joint.
Osteoarthritis Cartilage. 2010 Jul;18(7):909-16. doi: 10.1016/j.joca.2010.04.011. Epub 2010 Apr 29.
9
Computational assessment of the influence of vastus medialis obliquus function on patellofemoral pressures: model evaluation.
J Biomech. 2010 Mar 3;43(4):612-7. doi: 10.1016/j.jbiomech.2009.10.039. Epub 2010 Jan 8.
10
Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend.
J Biomech. 2009 Oct 16;42(14):2341-8. doi: 10.1016/j.jbiomech.2009.06.028. Epub 2009 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验