Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands.
J Comput Chem. 2013 Aug 5;34(21):1819-27. doi: 10.1002/jcc.23323. Epub 2013 May 29.
In this article, we document a new implementation of the fuzzy cells scheme for numerical integration in polyatomic systems [Becke, J. Chem. Phys. 1998, 88, 2547] and compare its efficiency and accuracy with respect to an integration scheme based on the Voronoi space partitioning. We show that the accuracy of both methods is comparable, but that the fuzzy cells scheme is better suited for geometry optimization. For this method, we also introduce the locally dense grid concept and present a proof-of-concept application.
在本文中,我们记录了一种新的用于多原子体系数值积分的模糊单元方案(Becke,J. Chem. Phys. 1998, 88, 2547)的实现,并比较了它与基于Voronoi 空间划分的积分方案的效率和准确性。我们表明,两种方法的准确性相当,但模糊单元方案更适合几何优化。对于这种方法,我们还引入了局部密集网格的概念,并给出了一个概念验证应用。