Leung Kam
National for Biotechnology Information, NLM, NIH, Bethesda, MD
Optical fluorescence imaging is increasingly used to monitor biological functions of specific targets in small animals (1-4). However, the intrinsic fluorescence of biomolecules poses a problem when fluorophores that absorb visible light (350–650 nm) are used. Near-infrared (NIR) fluorescence (650–1,000 nm) detection avoids the natural background fluorescence interference of biomolecules, providing a high contrast between target and background tissues in small animals. NIR fluorophores have a wider dynamic range and minimal background fluorescence as a result of reduced scattering compared with visible fluorescence detection. NIR fluorophores also have high sensitivity, attributable to low background fluorescence, and high extinction coefficients, which provide high quantum yields. The NIR region is also compatible with solid-state optical components, such as diode lasers and silicon detectors. NIR fluorescence imaging is a noninvasive alternative to radionuclide imaging in small animals (4, 5). Extracellular matrix adhesion molecules consist of a complex network of fibronectins, collagens, chondroitins, laminins, glycoproteins, heparin sulfate, tenascins, and proteoglycans that surround connective tissue cells, and they are mainly secreted by fibroblasts, chondroblasts, and osteoblasts (6). Cell substrate adhesion molecules are considered essential regulators of cell migration, differentiation, and tissue integrity and remodeling. These molecules play a role in inflammation and atherogenesis, but they also participate in the process of invasion and metastasis of malignant cells in the host tissue (7). A meshwork of clotted plasma protein was present in the tumor stroma but not in normal tissues, providing a functional matrix for angiogenesis, cell migration, and tumor cell invasion (8). There are high levels of collagens, fibronectin, and fibrin in the tumor connective tissues. Thrombosis plays a major role in many cardiovascular diseases such as myocardial infarction, pulmonary embolism, deep venous thrombosis, and cerebral venous thrombosis (9). Thrombosis occurs by an activation process of thrombin (F2 coagulation factor II), which then converts fibrinogen into fibrin. Thrombin initiates the cross-linking of the polymerized fibrin the activation of a transglutamase enzyme called coagulation factor XIII (FXIIIa indicates activated factor XIII) (10). Atherosclerotic lesions often contain microthrombi and fibrin on their surface. Fibrin is associated with a variety of malignant tumors. Fibrin is essential for stroma formation in the tumor with deposition of fibrin, which leads to tumor angiogenesis and metastasis. Hara et al. (11) prepared Cy7-Tyr-d-Glu-Cys-Hyp-Tyr(3-Cl)-Gly-Leu-Cys-Tyr-Ile-Gln-NH (Cy7-FTP11) for use with NIR fluorescence imaging of fibrin in thrombi in mice using high-resolution intravital fluorescence microscopy and fluorescence molecular tomography.
光学荧光成像越来越多地用于监测小动物体内特定靶点的生物学功能(1 - 4)。然而,当使用吸收可见光(350 - 650 nm)的荧光团时,生物分子的固有荧光会带来问题。近红外(NIR)荧光(650 - 1000 nm)检测可避免生物分子的天然背景荧光干扰,在小动物体内的靶组织和背景组织之间提供高对比度。与可见光荧光检测相比,近红外荧光团由于散射减少,具有更宽的动态范围和最小的背景荧光。近红外荧光团还具有高灵敏度,这归因于低背景荧光,以及高消光系数,可提供高量子产率。近红外区域也与固态光学组件兼容,如二极管激光器和硅探测器。近红外荧光成像在小动物体内是放射性核素成像的一种非侵入性替代方法(4,5)。细胞外基质粘附分子由围绕结缔组织细胞的纤连蛋白、胶原蛋白、软骨素、层粘连蛋白、糖蛋白、硫酸肝素、腱生蛋白和蛋白聚糖组成的复杂网络构成,它们主要由成纤维细胞、成软骨细胞和成骨细胞分泌(6)。细胞基质粘附分子被认为是细胞迁移、分化以及组织完整性和重塑的重要调节因子。这些分子在炎症和动脉粥样硬化形成中起作用,但它们也参与宿主组织中恶性细胞的侵袭和转移过程(7)。肿瘤基质中存在凝块血浆蛋白网络,而正常组织中不存在,为血管生成、细胞迁移和肿瘤细胞侵袭提供了功能性基质(8)。肿瘤结缔组织中存在高水平的胶原蛋白、纤连蛋白和纤维蛋白。血栓形成在许多心血管疾病如心肌梗死、肺栓塞、深静脉血栓形成和脑静脉血栓形成中起主要作用(9)。血栓形成是通过凝血酶(F2凝血因子II)的激活过程发生的,然后凝血酶将纤维蛋白原转化为纤维蛋白。凝血酶启动聚合纤维蛋白的交联 一种称为凝血因子XIII的转谷氨酰胺酶的激活(FXIIIa表示活化的因子XIII)(10)。动脉粥样硬化病变表面通常含有微血栓和纤维蛋白。纤维蛋白与多种恶性肿瘤有关。纤维蛋白对于肿瘤中基质的形成至关重要,纤维蛋白的沉积会导致肿瘤血管生成和转移。原田等人(11)制备了Cy7 - Tyr - d - Glu - Cys - Hyp - Tyr(3 - Cl) - Gly - Leu - Cys - Tyr - Ile - Gln - NH(Cy7 - FTP11),用于使用高分辨率活体荧光显微镜和荧光分子断层扫描对小鼠血栓中的纤维蛋白进行近红外荧光成像。