Suppr超能文献

激光微切割与常压化学电离质谱联用的多模态成像。

Laser microdissection and atmospheric pressure chemical ionization mass spectrometry coupled for multimodal imaging.

机构信息

Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6131, USA.

出版信息

Rapid Commun Mass Spectrom. 2013 Jul 15;27(13):1429-36. doi: 10.1002/rcm.6593.

Abstract

RATIONALE

Improvement in spatial resolution of atmospheric pressure molecular chemical imaging is required to resolve distinct surface features in the low micrometer and sub-micrometer scale. Laser capture microdissection systems have the capability to focus laser light to a few micrometers. This type of system, when employed for laser ablation (LA) mass spectrometry (MS)-based chemical imaging, has the potential to achieve high spatial resolution with multimodal optical and chemical imaging capability.

METHODS

A commercially available laser capture microdissection system was coupled to a modified ion source of a mass spectrometer. This design allowed for sampling of laser-ablated material via a transfer tube directly into the ionization region. Ionization of the ablated material was accomplished using atmospheric pressure chemical ionization (APCI).

RESULTS

Rhodamine 6G dye of red permanent marker ink in a laser etched pattern as well as cholesterol and phosphatidylcholine in a cerebellum mouse brain thin tissue section were identified and imaged from the mass spectral data. Employing a spot diameter of 8 µm using the 10× microscope cutting objective and lateral oversampling resulted in a pixel size of about 3.7 µm in the same dimension. Distinguishing between features approximately 13 µm apart in a cerebellum mouse brain thin tissue section was demonstrated in a multimodal fashion co-registering optical and mass spectral images.

CONCLUSIONS

A LA/APCI-MS system was developed that comprised a commercially available laser microdissection instrument for transmission geometry LA and a modestly modified ion source for secondary ionization of the ablated material. The set-up was successfully applied for multimodal imaging using the ability to co-register bright field, fluorescence and mass spectral chemical images on one platform.

摘要

原理

为了在低至微米和亚微米尺度上分辨出不同的表面特征,需要提高大气压分子化学成像的空间分辨率。激光捕获微切割系统有能力将激光聚焦到几微米。当这种系统用于基于激光烧蚀 (LA) 的质谱 (MS) 化学成像时,它有可能实现高空间分辨率和多模态光学和化学成像能力。

方法

将市售的激光捕获微切割系统与质谱仪的改良离子源耦合。这种设计允许通过转移管将激光烧蚀材料直接取样到离子化区域。使用大气压化学电离 (APCI) 实现烧蚀材料的电离。

结果

红色永久性标记墨水的罗丹明 6G 染料以及小脑鼠脑薄组织切片中的胆固醇和磷脂酰胆碱,均从质谱数据中被识别并成像。使用 10×显微镜切割物镜和横向过采样,直径为 8 µm 的光斑可在同一维度上产生约 3.7 µm 的像素大小。通过共注册光学和质谱图像,以多模态方式证明了在小脑鼠脑薄组织切片中,大约 13 µm 分开的特征可以区分开来。

结论

开发了一种 LA/APCI-MS 系统,该系统包括商用激光微切割仪器,用于透射几何 LA,以及经过适度修改的离子源,用于烧蚀材料的二次电离。该设置成功地应用于多模态成像,能够在一个平台上共注册明场、荧光和质谱化学图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验