Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX, 76203-5017, USA,
J Comp Physiol B. 2013 Oct;183(7):921-32. doi: 10.1007/s00360-013-0765-0. Epub 2013 Jun 2.
Amphibian pulmonary and systemic vascular circuits are arranged in parallel, with potentially important consequences for resistance (R) to blood flow. The contribution of the parallel anatomic arrangement to total vascular R (R T), independent of blood viscosity, is unknown. We measured pulmonary (R P) and systemic (R S) vascular R with an in situ Ringer's solution perfusion technique using anesthetized anuran and urodele species to determine: (1) relative contributions of vascular anatomy and blood viscosity to R T; (2) distensibility index (%Δ flow kPa(-1)) of the pulmonary and systemic vascular circuits; and (3) interspecific correlates of variation in these parameters with red blood cell size, cardiac power output, and aerobic capacities. R P was lower than R S in anurans, while R P of the urodeles was greater than R S and significantly greater than anuran R P. Anuran R T was lowest and did not vary interspecifically, whereas urodele R T was significantly greater than anuran, and varied interspecifically. Pulmonary and systemic circuit distensibility differences may explain cardiac shunt patterns in toads with changes in cardiac output from rest to activity. When blood viscosity was taken into account, vascular resistance accounted for about 25 % of R T while blood viscosity accounted for the remaining 75 %. Owing to lower R T, terrestrial anuran species required lower cardiac power outputs when moving fluid through their vasculature compared to aquatic species. These results indicate that physical characteristics of the vasculature can account for interspecific differences in cardiovascular physiology and suggest a co-evolution of cardiac and vascular anatomy among amphibians.
两栖类的肺和体循环血管呈平行排列,这对血流阻力(R)可能有重要影响。目前尚不清楚这种平行解剖结构对总血管阻力(R T)的贡献,而这种贡献与血液黏度无关。我们采用麻醉后的两栖类和有尾类动物的原位林格氏液灌注技术来测量肺血管(R P)和体循环血管(R S)的血管阻力,以确定:(1)血管解剖结构和血液黏度对 R T的相对贡献;(2)肺和体循环血管的弹性指数(%Δ 流量 kPa(-1));(3)红细胞大小、心输出量和有氧能力等参数与这些参数变化的种间相关性。在蛙类中,R P 低于 R S,而有尾类的 R P 高于 R S,明显高于蛙类的 R P。蛙类的 R T 最低且没有种间差异,而有尾类的 R T 明显高于蛙类,且存在种间差异。肺和体循环血管的弹性差异可能解释了蟾蜍的心脏分流模式,即心脏输出量从休息到活动时发生变化。当考虑血液黏度时,血管阻力约占 R T 的 25%,而血液黏度则占剩余的 75%。由于 R T 较低,与水生动物相比,陆地蛙类在通过血管系统输送液体时所需的心输出量更低。这些结果表明,血管的物理特性可以解释心血管生理学的种间差异,并提示两栖类动物的心脏和血管解剖结构的共同进化。