Suppr超能文献

参与沙门氏菌鞭毛丝蛋白 L 型到 R 型原丝转变的关键氨基酸残基。

Key amino acid residues involved in the transitions of L- to R-type protofilaments of the Salmonella flagellar filament.

机构信息

Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Japan.

出版信息

J Bacteriol. 2013 Aug;195(16):3503-13. doi: 10.1128/JB.02091-12. Epub 2013 May 31.

Abstract

The flagellar filament enables bacteria to swim by functioning as a helical propeller. The filament is a supercoiled assembly of a single protein, flagellin, and is formed by 11 protofilaments arranged in a circle. Bacterial swimming and tumbling correlate with changes of the various helical structures, called polymorphic transformation, that are determined by the ratios of two distinct forms of protofilaments, the L and R types. The polymorphic transformation is caused by transition of the protofilament between L and R types. Elucidation of this transition mechanism has been addressed by comparing the atomic structures of L- and R-type straight filaments or using massive molecular dynamic simulation. Here, we found amino acid residues required for the transition of the protofilament using fliC-intragenic suppressor analysis. We isolated a number of revertants producing supercoiled filaments from mutants with straight filaments and identified the second-site mutations in all of the revertants. The results suggest that Asp107, Gly426, and Ser448 and Ser106, Ala416, Ala427, and Arg431 are the key residues involved in inducing supercoiled filaments from the R- and the L-type straight filaments, respectively. Considering the structures of the R- and L-type protofilaments and the relationship between the rotation of the flagellar motor and the polymorphic transformation, we propose that Gly426, Ala427, and Arg431 contribute to the first stage of the transition and that Ser106, Asp107, and Ala416 play a role in propagating the transitions along the flagellar filament.

摘要

鞭毛丝使细菌能够通过充当螺旋桨来游动。该丝是由单个蛋白质鞭毛蛋白组成的超螺旋组装体,由 11 个原丝排列成一圈形成。细菌的游动和翻滚与各种螺旋结构的变化相关,称为多态性转化,这种转化由两种不同类型的原丝,即 L 型和 R 型的比例决定。多态性转化是由原丝在 L 型和 R 型之间的转变引起的。通过比较 L 型和 R 型直丝的原子结构或使用大量分子动力学模拟,已经解决了阐明这种转变机制的问题。在这里,我们通过 fliC 基因内抑制子分析发现了原丝转变所需的氨基酸残基。我们从具有直丝的突变体中分离出了许多产生超螺旋丝的回复突变体,并鉴定了所有回复突变体中的第二位置突变。结果表明,Asp107、Gly426 和 Ser448 以及 Ser106、Ala416、Ala427 和 Arg431 是分别诱导 R 型和 L 型直丝产生超螺旋丝的关键残基。考虑到 R 型和 L 型原丝的结构以及鞭毛马达的旋转与多态性转化之间的关系,我们提出 Gly426、Ala427 和 Arg431 有助于转变的第一阶段,而 Ser106、Asp107 和 Ala416 在沿鞭毛丝传播转变中发挥作用。

相似文献

1
Key amino acid residues involved in the transitions of L- to R-type protofilaments of the Salmonella flagellar filament.
J Bacteriol. 2013 Aug;195(16):3503-13. doi: 10.1128/JB.02091-12. Epub 2013 May 31.
2
Role of flagellar hydrogen bonding in Salmonella motility and flagellar polymorphic transition.
Mol Microbiol. 2019 Nov;112(5):1519-1530. doi: 10.1111/mmi.14377. Epub 2019 Sep 13.
3
Purification and CryoEM Image Analysis of the Bacterial Flagellar Filament.
Methods Mol Biol. 2023;2646:43-53. doi: 10.1007/978-1-0716-3060-0_5.
5
6
Crosslinked flagella as a stabilized vaccine adjuvant scaffold.
BMC Biotechnol. 2019 Jul 18;19(1):48. doi: 10.1186/s12896-019-0545-3.
7
Correlation between supercoiling and conformational motions of the bacterial flagellar filament.
Biophys J. 2013 Nov 5;105(9):2157-65. doi: 10.1016/j.bpj.2013.09.039.
8
A "mechanistic" explanation of the multiple helical forms adopted by bacterial flagellar filaments.
J Mol Biol. 2013 Mar 11;425(5):914-28. doi: 10.1016/j.jmb.2012.12.007. Epub 2012 Dec 26.
9
Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.
Nat Struct Mol Biol. 2010 Apr;17(4):417-22. doi: 10.1038/nsmb.1774. Epub 2010 Mar 14.
10
Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
Nature. 2003 Aug 7;424(6949):643-50. doi: 10.1038/nature01830.

引用本文的文献

1
Flagellar polymorphism-dependent bacterial swimming motility in a structured environment.
Biophys Physicobiol. 2023 May 30;20(2):e200024. doi: 10.2142/biophysico.bppb-v20.0024. eCollection 2023 Jun 14.
2
Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion.
EcoSal Plus. 2023 Dec 12;11(1):eesp00112023. doi: 10.1128/ecosalplus.esp-0011-2023. Epub 2023 Jun 1.
3
Bending stiffness characterization of Bacillus subtilis' flagellar filament.
Biophys J. 2022 Jun 7;121(11):1975-1985. doi: 10.1016/j.bpj.2022.05.010. Epub 2022 May 12.
5
Heterogeneously flagellated microswimmer behavior in viscous fluids.
Biomicrofluidics. 2020 Apr 20;14(2):024112. doi: 10.1063/1.5137743. eCollection 2020 Mar.
6
Multiple Flagellin Proteins Have Distinct and Synergistic Roles in Agrobacterium tumefaciens Motility.
J Bacteriol. 2018 Nov 6;200(23). doi: 10.1128/JB.00327-18. Print 2018 Dec 1.
7
A structural model of flagellar filament switching across multiple bacterial species.
Nat Commun. 2017 Oct 16;8(1):960. doi: 10.1038/s41467-017-01075-5.

本文引用的文献

1
A "mechanistic" explanation of the multiple helical forms adopted by bacterial flagellar filaments.
J Mol Biol. 2013 Mar 11;425(5):914-28. doi: 10.1016/j.jmb.2012.12.007. Epub 2012 Dec 26.
2
Conformational change of flagellin for polymorphic supercoiling of the flagellar filament.
Nat Struct Mol Biol. 2010 Apr;17(4):417-22. doi: 10.1038/nsmb.1774. Epub 2010 Mar 14.
3
On torque and tumbling in swimming Escherichia coli.
J Bacteriol. 2007 Mar;189(5):1756-64. doi: 10.1128/JB.01501-06. Epub 2006 Dec 22.
4
Switch interactions control energy frustration and multiple flagellar filament structures.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4894-9. doi: 10.1073/pnas.0510285103. Epub 2006 Mar 20.
5
Variation in bacterial flagellins: from sequence to structure.
Trends Microbiol. 2006 Apr;14(4):151-5. doi: 10.1016/j.tim.2006.02.008. Epub 2006 Mar 15.
6
Receptor clustering and signal processing in E. coli chemotaxis.
Trends Microbiol. 2004 Dec;12(12):569-76. doi: 10.1016/j.tim.2004.10.003.
7
Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy.
Nature. 2003 Aug 7;424(6949):643-50. doi: 10.1038/nature01830.
8
Molecular information processing: lessons from bacterial chemotaxis.
J Biol Chem. 2002 Mar 22;277(12):9625-8. doi: 10.1074/jbc.R100066200. Epub 2002 Jan 4.
9
Real-time imaging of fluorescent flagellar filaments.
J Bacteriol. 2000 May;182(10):2793-801. doi: 10.1128/JB.182.10.2793-2801.2000.
10
Quasi- and nonequivalence in the structure of bacterial flagellar filament.
Biophys J. 1998 Jan;74(1):569-75. doi: 10.1016/S0006-3495(98)77815-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验