Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA.
Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, USA.
J Bacteriol. 2018 Nov 6;200(23). doi: 10.1128/JB.00327-18. Print 2018 Dec 1.
Rotary flagella propel bacteria through liquid and across semisolid environments. Flagella are composed of the basal body that constitutes the motor for rotation, the curved hook that connects to the basal body, and the flagellar filament that propels the cell. Flagellar filaments can be composed of a single flagellin protein, such as in , or made up of multiple flagellins, such as in The four distinct flagellins FlaA, FlaB, FlaC, and FlaD produced by wild-type are not redundant in function but have specific properties. FlaA and FlaB are much more abundant than FlaC and FlaD and are readily observable in mature flagellar filaments, when either FlaA or FlaB is fluorescently labeled. Cells producing FlaA with any one of the other three flagellins can generate functional filaments and thus are motile, but FlaA alone cannot constitute a functional filament. In mutants that manifest swimming deficiencies, there are multiple ways by which these mutations can be phenotypically suppressed. These suppressor mutations primarily occur within or upstream of the flagellin gene or in the transcription factor regulating flagellin expression. The helical conformation of the flagellar filament appears to require a key asparagine residue present in FlaA and absent in other flagellins. However, FlaB can be spontaneously mutated to render helical flagella in the absence of FlaA, reflecting their overall similarity and perhaps the subtle differences in the specific functions they have evolved to fulfill. Flagellins are abundant bacterial proteins comprising the flagellar filaments that propel bacterial movement. Several members of the alphaproteobacterial group express multiple flagellins, in contrast to model systems, such as with , which has one type of flagellin. The plant pathogen has four flagellins, the abundant and readily detected FlaA and FlaB, and lower levels of FlaC and FlaD. Mutational analysis reveals that FlaA requires at least one of the other flagellins to function, as mutants produce nonhelical flagella and cannot swim efficiently. Suppressor mutations can rescue this swimming defect through mutations in the remaining flagellins, including structural changes imparting helical shape to the flagella, and putative regulators. Our findings shed light on how multiple flagellins contribute to motility.
旋转的鞭毛通过液体和半固体环境推动细菌。鞭毛由构成旋转动力的基体、连接基体的弯曲钩和推动细胞的鞭毛丝组成。鞭毛丝可以由单个鞭毛蛋白组成,例如在 中,或者由多个鞭毛蛋白组成,例如在 中。野生型 产生的四种不同的鞭毛蛋白 FlaA、FlaB、FlaC 和 FlaD 在功能上不是冗余的,而是具有特定的性质。FlaA 和 FlaB 比 FlaC 和 FlaD 丰富得多,在成熟的鞭毛丝中很容易观察到,当 FlaA 或 FlaB 被荧光标记时。产生带有其他三种鞭毛蛋白之一的 FlaA 的细胞可以生成功能性的鞭毛丝,从而具有运动能力,但 FlaA 本身不能构成功能性的鞭毛丝。在表现出游泳缺陷的 突变体中,有多种方法可以表型抑制这些突变。这些抑制突变主要发生在 鞭毛蛋白基因内或上游,或在调节鞭毛蛋白表达的转录因子 中。鞭毛丝的螺旋构象似乎需要一个关键的天冬酰胺残基,该残基存在于 FlaA 中,而不存在于其他鞭毛蛋白中。然而,FlaB 可以自发突变,使缺乏 FlaA 的螺旋鞭毛,反映了它们的总体相似性,也许反映了它们在进化过程中所承担的特定功能的细微差异。鞭毛蛋白是构成推动细菌运动的鞭毛丝的丰富的细菌蛋白。与模型系统(如只有一种鞭毛蛋白的 )相比,许多α变形杆菌群的成员表达多种鞭毛蛋白。植物病原体 有四种鞭毛蛋白,丰富且易于检测的 FlaA 和 FlaB,以及较低水平的 FlaC 和 FlaD。突变分析表明,FlaA 需要至少一种其他鞭毛蛋白才能发挥作用,因为 突变体产生非螺旋鞭毛,不能有效地游动。通过其余鞭毛蛋白的突变,包括赋予鞭毛螺旋形状的结构变化和假定的调节剂,抑制突变可以挽救这种游动缺陷。我们的研究结果揭示了多种鞭毛蛋白如何促进运动。