Suppr超能文献

你认识多少人?:有效估计个人社交网络规模。

How many people do you know?: Efficiently estimating personal network size.

作者信息

McCormick Tyler H, Salganik Matthew J, Zheng Tian

机构信息

Department of Statistics, Columbia University, New York, New York, 10027.

出版信息

J Am Stat Assoc. 2010 Mar 1;105(489):59-70. doi: 10.1198/jasa.2009.ap08518.

Abstract

In this paper we develop a method to estimate both individual social network size (i.e., degree) and the distribution of network sizes in a population by asking respondents how many people they know in specific subpopulations (e.g., people named Michael). Building on the scale-up method of Killworth et al. (1998b) and other previous attempts to estimate individual network size, we propose a latent non-random mixing model which resolves three known problems with previous approaches. As a byproduct, our method also provides estimates of the rate of social mixing between population groups. We demonstrate the model using a sample of 1,370 adults originally collected by McCarty et al. (2001). Based on insights developed during the statistical modeling, we conclude by offering practical guidelines for the design of future surveys to estimate social network size. Most importantly, we show that if the first names to be asked about are chosen properly, the simple scale-up degree estimates can enjoy the same bias-reduction as that from the our more complex latent non-random mixing model.

摘要

在本文中,我们开发了一种方法,通过询问受访者他们在特定亚群体(例如叫迈克尔的人)中认识多少人,来估计个体社交网络规模(即度数)以及总体中网络规模的分布。基于基尔沃思等人(1998b)的放大法以及之前其他估计个体网络规模的尝试,我们提出了一种潜在非随机混合模型,该模型解决了先前方法存在的三个已知问题。作为副产品,我们的方法还提供了不同人群群体之间社交混合率的估计值。我们使用麦卡蒂等人(2001)最初收集的1370名成年人样本对该模型进行了演示。基于统计建模过程中获得的见解,我们最后为未来估计社交网络规模的调查设计提供了实用指南。最重要的是,我们表明,如果所询问的名字选择得当,简单的放大度数估计可以与我们更复杂的潜在非随机混合模型一样减少偏差。

相似文献

10
Thirty Years of The Network Scale-up Method.网络推广方法三十年。
J Am Stat Assoc. 2021;116(535):1548-1559. doi: 10.1080/01621459.2021.1935267. Epub 2021 Jul 21.

引用本文的文献

4
Comparing the Robustness of Simple Network Scale-Up Method Estimators.比较简单网络扩展方法估计器的稳健性。
Sociol Methodol. 2024 Aug;54(2):385-403. doi: 10.1177/00811750241242791. Epub 2024 Apr 14.
6
Thirty Years of The Network Scale-up Method.网络推广方法三十年。
J Am Stat Assoc. 2021;116(535):1548-1559. doi: 10.1080/01621459.2021.1935267. Epub 2021 Jul 21.
7
Consistently estimating network statistics using aggregated relational data.使用聚合关系数据来持续估计网络统计数据。
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2207185120. doi: 10.1073/pnas.2207185120. Epub 2023 May 16.

本文引用的文献

1
Social network size in humans.人类的社交网络规模。
Hum Nat. 2003 Mar;14(1):53-72. doi: 10.1007/s12110-003-1016-y.
3
Structure and tie strengths in mobile communication networks.移动通信网络中的结构与连接强度
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7332-6. doi: 10.1073/pnas.0610245104. Epub 2007 Apr 24.
4
Evolutionary dynamics of social dilemmas in structured heterogeneous populations.结构化异质群体中社会困境的进化动力学
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3490-4. doi: 10.1073/pnas.0508201103. Epub 2006 Feb 16.
5
6
Identity and search in social networks.社交网络中的身份与搜索。
Science. 2002 May 17;296(5571):1302-5. doi: 10.1126/science.1070120.
7
Epidemic spreading in scale-free networks.无标度网络中的流行病传播。
Phys Rev Lett. 2001 Apr 2;86(14):3200-3. doi: 10.1103/PhysRevLett.86.3200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验