Suppr超能文献

有袋动物,塔马尔沙袋鼠的生殖系中的产后表观遗传重编程。

Postnatal epigenetic reprogramming in the germline of a marsupial, the tammar wallaby.

机构信息

Department of Zoology, The University of Melbourne, Victoria, 3010, Australia.

出版信息

Epigenetics Chromatin. 2013 Jun 3;6(1):14. doi: 10.1186/1756-8935-6-14.

Abstract

BACKGROUND

Epigenetic reprogramming is essential to restore totipotency and to reset genomic imprints during mammalian germ cell development and gamete formation. The dynamic DNA methylation change at DMRs (differentially methylated regions) within imprinted domains and of retrotransposons is characteristic of this process. Both marsupials and eutherian mammals have genomic imprinting but these two subgroups have been evolving separately for up to 160 million years. Marsupials have a unique reproductive strategy and deliver tiny, altricial young that complete their development within their mother's pouch. Germ cell proliferation in the genital ridge continues after birth in the tammar wallaby (Macropus eugenii), and it is only after 25 days postpartum that female germ cells begin to enter meiosis and male germ cells begin to enter mitotic arrest. At least two marsupial imprinted loci (PEG10 and H19) also have DMRs. To investigate the evolution of epigenetic reprogramming in the marsupial germline, here we collected germ cells from male pouch young of the tammar wallaby and analysed the methylation status of PEG10 and H19 DMR, an LTR (long terminal repeat) and a non-LTR retrotransposons.

RESULTS

Demethylation of the H19 DMR was almost completed by 14 days postpartum and de-novo methylation started from 34 days postpartum. These stages correspond to 14 days after the completion of primordial germ cell migration into genital ridge (demethylation) and 9 days after the first detection of mitotic arrest (re-methylation) in the male germ cells. Interestingly, the PEG10 DMR was already unmethylated at 7 days postpartum, suggesting that the timing of epigenetic reprogramming is not the same at all genomic loci. Retrotransposon methylation was not completely removed after the demethylation event in the germ cells, similar to the situation in the mouse.

CONCLUSIONS

Thus, despite the postnatal occurrence of epigenetic reprogramming and the persistence of genome-wide undermethylation for 20 days in the postnatal tammar, the relative timing and mechanism of germ cell reprogramming are conserved between marsupials and eutherians. We suggest that the basic mechanism of epigenetic reprogramming had already been established before the marsupial-eutherian split and has been faithfully maintained for at least 160 million years and may reflect the timing of the onset of mitotic arrest in the male germline.

摘要

背景

表观遗传重编程对于在哺乳动物生殖细胞发育和配子形成过程中恢复全能性和重置基因组印迹至关重要。印迹域内 DMR(差异甲基化区域)和逆转座子的动态 DNA 甲基化变化是这个过程的特征。有袋动物和真兽类动物都具有基因组印迹,但这两个亚群已经独立进化了多达 1.6 亿年。有袋动物具有独特的生殖策略,产下微小的、早产的幼仔,这些幼仔在母体内的育儿袋中完成发育。塔马尔袋鼠(Macropus eugenii)的生殖器嵴中的生殖细胞增殖在出生后继续进行,只有在产后 25 天后,雌性生殖细胞才开始进入减数分裂,雄性生殖细胞才开始进入有丝分裂阻滞。至少有两个有袋动物印迹基因座(PEG10 和 H19)也有 DMR。为了研究有袋动物生殖系中表观遗传重编程的进化,我们在这里从塔马尔袋鼠的雄性育儿袋幼仔中收集生殖细胞,并分析了 PEG10 和 H19 DMR、LTR(长末端重复)和非 LTR 逆转座子的甲基化状态。

结果

H19 DMR 的去甲基化在产后 14 天几乎完成,从头甲基化从产后 34 天开始。这些阶段对应于生殖细胞迁移到生殖器嵴完成后 14 天(去甲基化)和雄性生殖细胞第一次检测到有丝分裂阻滞后 9 天(重新甲基化)。有趣的是,PEG10 DMR 在产后 7 天已经是非甲基化的,这表明表观遗传重编程的时间在所有基因组位点上并不相同。在生殖细胞去甲基化事件后,逆转座子的甲基化并没有完全去除,这与小鼠的情况相似。

结论

因此,尽管有袋动物在产后发生了表观遗传重编程,并且在产后的塔马尔中存在长达 20 天的全基因组低甲基化,但生殖细胞重编程的相对时间和机制在有袋动物和真兽类动物之间是保守的。我们认为,表观遗传重编程的基本机制在有袋动物-真兽类动物分化之前就已经建立,并已经被忠实保留了至少 1.6 亿年,这可能反映了雄性生殖细胞有丝分裂阻滞的开始时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed5a/3687581/8ba77c13892f/1756-8935-6-14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验