Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10258-63. doi: 10.1073/pnas.1222404110. Epub 2013 Jun 3.
The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
MYC 基因是人类肿瘤中最常被激活的致癌基因,因此成为有吸引力的治疗靶点。MYCN 扩增导致儿童神经母细胞瘤的临床预后不良,但目前尚无调节 MYCN 功能的策略。在这里,我们表明,10058-F4,一种经过表征的 c-MYC/Max 抑制剂,也靶向 MYCN/Max 相互作用,导致 MYCN 扩增的神经母细胞瘤细胞中的细胞周期停滞、细胞凋亡和神经元分化,并增加 MYCN 转基因小鼠的存活。我们还报告了一项发现,即抑制 MYC 会伴随着肿瘤细胞内脂滴的积累,这是线粒体功能障碍的直接后果。这项研究扩展了目前关于 MYC 蛋白如何控制癌细胞代谢重编程的知识,特别是强调了脂质代谢和呼吸链作为参与神经母细胞瘤发病机制的重要途径。我们的数据共同支持直接抑制 MYC 作为治疗 MYC 驱动肿瘤的有前途的策略。