School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
Philos Trans A Math Phys Eng Sci. 2013 Jun 3;371(1994):20120335. doi: 10.1098/rsta.2012.0335. Print 2013 Jul 13.
Understanding the nature of dust condensation in the outflow from oxygen-rich asymptotic giant branch stars is a continuing problem. A kinetic model has been developed to describe the formation of gas-phase precursors from Ca, Mg, Fe, SiO and TiO in an outflow cooling from 1500 to 1000 K. Electronic structure calculations are used to identify efficient reaction pathways that lead to the formation of metal titanates and silicates. The molecular properties of the stationary points on the relevant potential energy surfaces are then used in a multi-well master equation solver to calculate pertinent rate coefficients. The outflow model couples an explicit treatment of gas-phase chemistry to a volume-conserving particle growth model. CaTiO₃ is shown to be the overwhelming contributor to the formation of condensation nuclei (CN), with less than 0.01 per cent provided by CaSiO₃, (TiO₂)₂ and FeTiO₃. Magnesium species make a negligible contribution. Defining CN as particles with radii greater than 2 nm, the model shows that for stellar mass loss rates above 3×10⁻⁵ M⊙ yr⁻¹, more than 10⁻¹³ CN per H nucleus will be produced when the outflow temperature is still well above 1000 K. This is sufficient to explain the observed number density of grains in circumstellar dust shells.
理解含氧渐近巨星支恒星外流物中尘埃凝聚的本质是一个持续存在的问题。已经开发了一种动力学模型来描述在从 1500 到 1000 K 冷却的外流中,从 Ca、Mg、Fe、SiO 和 TiO 形成气相前体的过程。电子结构计算用于识别导致金属钛酸盐和硅酸盐形成的有效反应途径。然后,在多井主方程求解器中使用相关势能面上的稳定点的分子性质来计算相关的速率系数。该外流模型将气相化学的显式处理与体积守恒的颗粒生长模型耦合起来。CaTiO₃被证明是形成凝聚核 (CN) 的主要贡献者,而 CaSiO₃、(TiO₂)₂和 FeTiO₃的贡献不到 0.01%。镁物种的贡献可以忽略不计。将 CN 定义为半径大于 2nm 的颗粒,该模型表明,当外流温度仍远高于 1000 K 时,对于恒星质量损失率高于 3×10⁻⁵ M⊙ yr⁻¹,每 10⁻¹³ H 核将产生超过 10⁻¹³ CN。这足以解释观测到的星周尘埃壳中颗粒的数密度。