State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
Anal Chem. 2013 Jun 18;85(12):5746-54. doi: 10.1021/ac400336u. Epub 2013 Jun 4.
The research on complicated kinomics and kinase-target drug discovery requires the development of simple, cost-effective, and multiplex kinase assays. Herein, we propose a novel and versatile biosensing platform for the detection of protein kinase activity based on graphene oxide (GO)-peptide nanocomplex and phosphorylation-induced suppression of carboxypeptidase Y (CPY) cleavage. Kinase-catalyzed phosphorylation protects the fluorophore-labeled peptide probe against CPY digestion and induces the formation of a GO/peptide nanocomplex resulting in fluorescence quenching, while the nonphosphopeptide is degraded by CPY to release free fluorophore as well as restore fluorescence. This GO-based nanosensor has been successfully applied to sensitively detect two model kinases, casein kinase (CKII) and cAMP-dependent protein kinase (PKA) with low detection limits of 0.0833 mU/μL and 0.134 mU/μL, respectively. The feasibility of this GO-based sensor was further demonstrated by the assessment of kinase inhibition by staurosporine and H-89, in vitro kinase assay in cell lysates, and simultaneous detection of CKII and PKA activity. Moreover, the GO-based fluorescence anisotropy (FA) kinase assay has been also developed using GO as a FA signal amplifier. The proposed sensor is homogeneous, facile, universal, label-free, and applicable for multiplexed kinase assay, presenting a promising method for kinase-related biochemical fundamental research and inhibitor screening.
复杂的蛋白质组学和激酶靶向药物发现的研究需要开发简单、经济高效且多重的激酶检测方法。在此,我们提出了一种基于氧化石墨烯(GO)-肽纳米复合物和磷酸化诱导的羧肽酶 Y(CPY)切割抑制的新型多功能生物传感平台,用于检测蛋白激酶活性。激酶催化的磷酸化保护荧光标记肽探针免受 CPY 消化,并诱导 GO/肽纳米复合物的形成,导致荧光猝灭,而非磷酸肽被 CPY 降解以释放游离荧光团并恢复荧光。该基于 GO 的纳米传感器已成功应用于灵敏检测两种模型激酶,酪蛋白激酶(CKII)和 cAMP 依赖性蛋白激酶(PKA),检测限分别低至 0.0833 mU/μL 和 0.134 mU/μL。通过使用 staurosporine 和 H-89 评估激酶抑制作用、细胞裂解物中的体外激酶测定以及同时检测 CKII 和 PKA 活性,进一步证明了该基于 GO 的传感器的可行性。此外,还使用 GO 作为荧光各向异性(FA)信号放大器开发了基于 GO 的 FA 激酶测定法。该传感器具有均相、简便、通用、无标记且适用于多重激酶测定的特点,为激酶相关的生化基础研究和抑制剂筛选提供了一种很有前途的方法。