College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
Immunobiology. 2013 Dec;218(12):1452-67. doi: 10.1016/j.imbio.2013.04.019. Epub 2013 May 9.
Quercetin is a major bioflavonoid widely present in fruits and vegetables. It exhibits anti-inflammatory, anti-tumor, antioxidant properties and reduces cardiovascular disease risks. However, the molecular mechanism of action against inflammation in RAW 264.7 cells is only partially explored. Quercetin effect on LPS-induced gene and protein expressions of inflammatory mediators and cytokines were determined. Moreover, involvement of heme-oxygenase-1, protein kinases, adaptor proteins and transcription factors in molecular mechanism of quercetin action against inflammation were examined. Quercetin inhibited LPS-induced NO, PGE₂, iNOS, COX-2, TNF-α, IL-1β, IL-6 and GM-CSF mRNA and protein expressions while it promoted HO-1 induction in a dose- and time-dependent manner. It also suppressed I-κB-phosphorylation, NF-κB translocation, AP-1 and NF-κB-DNA-binding and reporter gene transcription. Quercetin attenuated p38(MAPK) and JNK1/2 but not ERK1/2 activations and this effect was further confirmed by SB203580 and SP600125-mediated suppressions of HO-1, iNOS, and COX-2 protein expressions. Moreover, quercetin arrested Src, PI3K, PDK1 and Akt activation in a time- and dose-dependent manner, which was comparable to PP2 and LY294002 inhibition of Src, PI3K/Akt and iNOS expressions. Quercetin further arrested Src and Syk tyrosine phosphorylations and their kinase activities followed by inhibition of PI3K tyrosine phosphorylation. Moreover, quercetin disrupted LPS-induced p85 association to TLR4/MyD88 complex and it then limited activation of IRAK1, TRAF6 and TAK1 with a subsequent reduction in p38 and JNK activations, and suppression in IKKα/β-mediated I-κB phosphorylation. Quercetin limits LPS-induced inflammation via inhibition of Src- and Syk-mediated PI3K-(p85) tyrosine phosphorylation and subsequent TLR4/MyD88/PI3K complex formation that limits activation of downstream signaling pathways.
槲皮素是一种广泛存在于水果和蔬菜中的主要类黄酮。它具有抗炎、抗肿瘤、抗氧化特性,并降低心血管疾病的风险。然而,其在 RAW 264.7 细胞中抗炎作用的分子机制仅部分得到探索。本研究旨在确定槲皮素对 LPS 诱导的炎症介质和细胞因子基因和蛋白表达的影响,以及血红素加氧酶-1(HO-1)、蛋白激酶、衔接蛋白和转录因子在槲皮素抗炎作用中的分子机制。结果表明,槲皮素呈剂量和时间依赖性地抑制 LPS 诱导的 NO、PGE₂、iNOS、COX-2、TNF-α、IL-1β、IL-6 和 GM-CSF mRNA 和蛋白表达,同时促进 HO-1 的诱导。它还抑制 I-κB 磷酸化、NF-κB 易位、AP-1 和 NF-κB-DNA 结合以及报告基因转录。槲皮素抑制 p38(MAPK)和 JNK1/2 的激活,但不抑制 ERK1/2 的激活,并且通过 SB203580 和 SP600125 介导的 HO-1、iNOS 和 COX-2 蛋白表达抑制作用进一步证实了这一点。此外,槲皮素呈时间和剂量依赖性地阻断 Src、PI3K、PDK1 和 Akt 的激活,其作用与 PP2 和 LY294002 抑制 Src、PI3K/Akt 和 iNOS 表达相当。槲皮素进一步阻断 Src 和 Syk 酪氨酸磷酸化及其激酶活性,随后抑制 PI3K 酪氨酸磷酸化。此外,槲皮素破坏 LPS 诱导的 p85 与 TLR4/MyD88 复合物的结合,从而限制 IRAK1、TRAF6 和 TAK1 的激活,随后减少 p38 和 JNK 的激活,并抑制 IKKα/β 介导的 I-κB 磷酸化。槲皮素通过抑制 Src 和 Syk 介导的 PI3K-(p85)酪氨酸磷酸化和随后的 TLR4/MyD88/PI3K 复合物形成,限制下游信号通路的激活,从而限制 LPS 诱导的炎症。