Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland.
Phys Biol. 2013 Jun;10(3):035006. doi: 10.1088/1478-3975/10/3/035006. Epub 2013 Jun 4.
The Raf/MEK/ERK cascade is one of the most studied and important signal transduction pathways. However, existing models largely ignore the existence of isoforms of the constituent kinases and their interactions. Here, we propose a model of the ERK cascade that includes heretofore neglected differences between isoforms of MEK. In particular, MEK1 is subject to a negative feedback from activated ERK, which is further conferred to MEK2 via hetero-dimerization. Specifically, ERK phosphorylates MEK1 at the residue Thr292, hypothetically creating an additional phosphatase binding site, accelerating MEK1 and MEK2 dephosphorylation. We incorporated these recently discovered interactions into a mathematical model of the ERK cascade that reproduces the experimental results of Catalanotti et al (2009 Nature Struct. Mol. Biol. 16 294-303) and Kamioka et al (2010 J. Biol. Chem. 285 33540-8). Furthermore, the model allows for predictions regarding the differences in the catalytic activity and function of the MEK isoforms. We propose that the MEK1/MEK2 ratio regulates the duration of the response, which increases with the level of MEK2 and decreases with the level of MEK1. In turn, the amplitude of the response is controlled by the total amount of the two isoforms. We confirm the proposed model structure performing a random parameter sampling, which led us to the conclusion that the sampled parameters, selected to properly reproduce wild-type (WT) cell behavior, to allow for qualitative reproduction of differences in behavior WT cells and cell mutants studied experimentally.
Raf/MEK/ERK 级联是研究最多和最重要的信号转导途径之一。然而,现有的模型在很大程度上忽略了组成激酶的同工型及其相互作用的存在。在这里,我们提出了一个 ERK 级联模型,其中包括迄今为止忽略的 MEK 同工型之间的差异。特别是,ERK 通过异二聚化对激活的 ERK 进行负反馈,进一步将其赋予 MEK2。具体来说,ERK 在假定的 Thr292 残基上磷酸化 MEK1,创建一个额外的磷酸酶结合位点,加速 MEK1 和 MEK2 的去磷酸化。我们将这些最近发现的相互作用纳入 ERK 级联的数学模型中,该模型再现了 Catalanotti 等人(2009 年《自然结构与分子生物学》16 294-303)和 Kamioka 等人(2010 年《生物化学杂志》285 33540-8)的实验结果。此外,该模型允许对 MEK 同工型的催化活性和功能差异进行预测。我们提出,MEK1/MEK2 比值调节反应的持续时间,随着 MEK2 水平的增加而增加,随着 MEK1 水平的降低而降低。反过来,响应的幅度由两种同工型的总量控制。我们通过随机参数抽样来验证所提出的模型结构,这使我们得出结论,所选择的抽样参数适当地再现了野生型(WT)细胞行为,允许定性再现实验研究的 WT 细胞和细胞突变体之间的行为差异。