Muradoglu Murat, Ng Tuck Wah
Laboratory for Optics, Acoustics & Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC, Australia.
Appl Opt. 2013 May 20;52(15):3500-9. doi: 10.1364/AO.52.003500.
Many applications use a focused Gaussian laser beam to manipulate spherical dielectric particles. The axial trapping efficiency of this process is a function of (i) the particle radius r, (ii) the ratio of the refractive index of particle over the medium, and (iii) the numerical aperture of the delivered light beam. During what we believe is the first comprehensive simulation of its kind, we uncovered optical trapping regions in the three-dimensional (3D) parameter space forming an iso-surface landscape with ridge-like contours. Using specific points in the parameter space, we drew attention to difficulties in using the trapping efficiency and stiffness metrics in defining how well particles are drawn into and held in the trap. We have proposed an alternative calculation based on the maximum forward and restoration values of the trapping efficiency in the axial sense, called the trapping quality. We also discuss the manner in which the ridge regions may be harnessed for effective particle sorting, how the optical trapping blind spots can be used in applications that seek to eschew photothermal damage, and how trapping can proceed when many parameters change, such as when swelling occurs.
许多应用使用聚焦高斯激光束来操纵球形介电粒子。该过程的轴向捕获效率取决于以下因素:(i)粒子半径r;(ii)粒子与介质的折射率之比;(iii)所传输光束的数值孔径。在我们认为是此类首次全面模拟的过程中,我们在三维(3D)参数空间中发现了光学捕获区域,这些区域形成了具有脊状轮廓的等表面景观。利用参数空间中的特定点,我们提请注意在使用捕获效率和刚度指标来定义粒子被吸入陷阱并保持在陷阱中的程度时所存在的困难。我们提出了一种基于轴向捕获效率的最大向前和恢复值的替代计算方法,称为捕获质量。我们还讨论了如何利用脊状区域进行有效的粒子分选,如何在试图避免光热损伤的应用中使用光学捕获盲点,以及当许多参数发生变化(例如发生膨胀时)捕获如何进行。