Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
J Biol Chem. 2013 Jul 12;288(28):20646-57. doi: 10.1074/jbc.M113.482711. Epub 2013 Jun 4.
Sarcoplasmic reticulum Ca(2+)-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca(2+) transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K(+) is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.
肌浆网 Ca(2+)-ATP 酶将三个细胞质结构域(A、P 和 N)的运动和重排与 Ca(2+) 转运相偶联。我们通过静电屏蔽与盐相结合、晶体结构中电场的计算机分析以及突变等系统方法,探索了静电在限速磷酸化酶(EP)转变中对结构域动力学的作用。低浓度 KCl 激活 EP 转变,而盐浓度高于 0.1m 则抑制 EP 转变。以 EP 转变速率的对数与蛋白质平均活动系数的平方作图,得到了线性关系,从而将激活能分为静电和非静电部分,其中可屏蔽的静电力被盐屏蔽。结果表明,转变中的结构变化受到空间限制,但当 K(+) 特异性结合在 P 结构域时,强静电力会加速反应。电场分析显示在其铰链处 N 和 P 结构域之间存在长程静电相互作用。与铰链直接相关的残基和其他带电荷的残基的突变,会同时破坏电场和结构转变。有利的静电显然为关键的 N 结构域向 P 结构域的运动提供了一条低能量路径,克服了空间限制。这里采用的系统方法通常是理解酶的结构机制的有力工具。