Suppr超能文献

Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

作者信息

Lin Tien-Sung, Rajagopalan Raghavan, Shen Yuefei, Park Sungho, Poreddy Amruta R, Asmelash Bethel, Karwa Amolkumar S, Taylor John-Stephen A

机构信息

Department of Chemistry, Washington University , St. Louis, Missouri 63130, United States.

出版信息

J Phys Chem A. 2013 Jul 3;117(26):5454-62. doi: 10.1021/jp402745m. Epub 2013 Jun 24.

Abstract

Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验