Liao Guan-Bo, Chen Yin-Quan, Bareil Paul B, Sheng Yunlong, Chiou Arthur, Chang Ming-Shien
Institute of Atomic and Molecular Science, Taipei, Taiwan; Molecular Science and Technology Program, Taiwan International Graduate Program TIGP, Academia Sinica, Taiwan.
J Biophotonics. 2014 Oct;7(10):782-7. doi: 10.1002/jbio.201300017. Epub 2013 Jun 6.
We calculated the three-dimensional optical stress distribution and the resulting deformation on a biconcave human red blood cell (RBC) in a pair of parallel optical trap. We assumed a Gaussian intensity distribution with a spherical wavefront for each trapping beam and calculated the optical stress from the momentum transfer associated with the reflection and refraction of the incident photons at each interface. The RBC was modelled as a biconcave thin elastic membrane with uniform elasticity and a uniform thickness of 0.25 μm. The resulting cell deformation was determined from the optical stress distribution by finite element software, Comsol Structure Mechanics Module, with Young's modulus (E) as a fitting parameter in order to fit the theoretical results for cell elongation to our experimental data.
我们计算了在一对平行光阱中双凹面人类红细胞(RBC)上的三维光学应力分布以及由此产生的变形。我们假设每个捕获光束具有高斯强度分布和球面波前,并根据与入射光子在每个界面处的反射和折射相关的动量转移来计算光学应力。红细胞被建模为具有均匀弹性和0.25μm均匀厚度的双凹薄弹性膜。通过有限元软件Comsol结构力学模块,以杨氏模量(E)作为拟合参数,根据光学应力分布确定由此产生的细胞变形,以便将细胞伸长的理论结果与我们的实验数据相拟合。