Suppr超能文献

TAS2R38 苦味受体的粗粒度/分子力学:激动剂结合的实验验证的详细结构预测。

Coarse-grained/molecular mechanics of the TAS2R38 bitter taste receptor: experimentally-validated detailed structural prediction of agonist binding.

机构信息

International School for Advanced Studies (SISSA-ISAS), Neuroscience Sector, Trieste, Italy.

出版信息

PLoS One. 2013 May 31;8(5):e64675. doi: 10.1371/journal.pone.0064675. Print 2013.

Abstract

Bitter molecules in humans are detected by ∼25 G protein-coupled receptors (GPCRs). The lack of atomic resolution structure for any of them is complicating an in depth understanding of the molecular mechanisms underlying bitter taste perception. Here, we investigate the molecular determinants of the interaction of the TAS2R38 bitter taste receptor with its agonists phenylthiocarbamide (PTC) and propylthiouracil (PROP). We use the recently developed hybrid Molecular Mechanics/Coarse Grained (MM/CG) method tailored specifically for GPCRs. The method, through an extensive exploration of the conformational space in the binding pocket, allows the identification of several residues important for agonist binding that would have been very difficult to capture from the standard bioinformatics/docking approach. Our calculations suggest that both agonists bind to Asn103, Phe197, Phe264 and Trp201, whilst they do not interact with the so-called extra cellular loop 2, involved in cis-retinal binding in the GPCR rhodopsin. These predictions are consistent with data sets based on more than 20 site-directed mutagenesis and functional calcium imaging experiments of TAS2R38. The method could be readily used for other GPCRs for which experimental information is currently lacking.

摘要

人类体内的苦味分子由大约 25 个 G 蛋白偶联受体(GPCR)检测到。由于缺乏任何一种 GPCR 的原子分辨率结构,这使得深入了解苦味感知的分子机制变得复杂。在这里,我们研究了 TAS2R38 苦味受体与其激动剂苯硫脲(PTC)和丙硫氧嘧啶(PROP)相互作用的分子决定因素。我们使用最近开发的专门针对 GPCR 的混合分子力学/粗粒化(MM/CG)方法。该方法通过在结合口袋中广泛探索构象空间,确定了几个对激动剂结合很重要的残基,这些残基如果仅从标准的生物信息学/对接方法中获得,将非常困难。我们的计算表明,两种激动剂都与 Asn103、Phe197、Phe264 和 Trp201 结合,而它们不与参与 GPCR 视紫红质中顺式视黄醛结合的所谓细胞外环 2 相互作用。这些预测与基于 TAS2R38 的 20 多次定点突变和功能性钙成像实验数据集一致。该方法可以很容易地用于其他目前缺乏实验信息的 GPCR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b609/3669430/2883eb862f17/pone.0064675.g001.jpg

相似文献

2
3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP).
J Chem Inf Model. 2012 Jul 23;52(7):1875-85. doi: 10.1021/ci300133a. Epub 2012 Jul 13.
4
Plasticity of the ligand binding pocket in the bitter taste receptor T2R7.
Biochim Biophys Acta Biomembr. 2018 May;1860(5):991-999. doi: 10.1016/j.bbamem.2018.01.014. Epub 2018 Feb 12.
7
Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells.
Am J Clin Nutr. 2013 Oct;98(4):1136-43. doi: 10.3945/ajcn.113.066688. Epub 2013 Sep 11.
8
Evidence for a Transient Additional Ligand Binding Site in the TAS2R46 Bitter Taste Receptor.
J Chem Theory Comput. 2015 Sep 8;11(9):4439-49. doi: 10.1021/acs.jctc.5b00472. Epub 2015 Aug 24.
9
Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14.
Biochim Biophys Acta Gen Subj. 2018 Oct;1862(10):2162-2173. doi: 10.1016/j.bbagen.2018.07.009. Epub 2018 Jul 19.
10
Supertasting and PROP bitterness depends on more than the TAS2R38 gene.
Chem Senses. 2008 Mar;33(3):255-65. doi: 10.1093/chemse/bjm084. Epub 2008 Jan 21.

引用本文的文献

1
Exploring TAS2R46 biomechanics through molecular dynamics and network analysis.
Front Mol Biosci. 2024 Dec 2;11:1473675. doi: 10.3389/fmolb.2024.1473675. eCollection 2024.
2
Functional molecular switches of mammalian G protein-coupled bitter-taste receptors.
Cell Mol Life Sci. 2021 Dec;78(23):7605-7615. doi: 10.1007/s00018-021-03968-7. Epub 2021 Oct 23.
4
In Silico Molecular Study of Tryptophan Bitterness.
Molecules. 2020 Oct 11;25(20):4623. doi: 10.3390/molecules25204623.
5
Structure-Function Analyses of Human Bitter Taste Receptors-Where Do We Stand?
Molecules. 2020 Sep 26;25(19):4423. doi: 10.3390/molecules25194423.
6
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
8
Dual binding mode of "bitter sugars" to their human bitter taste receptor target.
Sci Rep. 2019 Jun 11;9(1):8437. doi: 10.1038/s41598-019-44805-z.
9
A natural point mutation in the bitter taste receptor TAS2R16 causes inverse agonism of arbutin in lemur gustation.
Proc Biol Sci. 2019 Jun 12;286(1904):20190884. doi: 10.1098/rspb.2019.0884. Epub 2019 Jun 5.
10
Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations.
Front Mol Biosci. 2019 May 3;6:29. doi: 10.3389/fmolb.2019.00029. eCollection 2019.

本文引用的文献

1
The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands.
J Neurosci. 2013 Jan 2;33(1):201-13. doi: 10.1523/JNEUROSCI.3248-12.2013.
3
Bitter taste receptor research comes of age: from characterization to modulation of TAS2Rs.
Semin Cell Dev Biol. 2013 Mar;24(3):215-21. doi: 10.1016/j.semcdb.2012.08.006. Epub 2012 Aug 27.
4
3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP).
J Chem Inf Model. 2012 Jul 23;52(7):1875-85. doi: 10.1021/ci300133a. Epub 2012 Jul 13.
5
Diversity and modularity of G protein-coupled receptor structures.
Trends Pharmacol Sci. 2012 Jan;33(1):17-27. doi: 10.1016/j.tips.2011.09.003. Epub 2011 Oct 25.
6
Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs).
J Biol Chem. 2011 Oct 14;286(41):36032-36041. doi: 10.1074/jbc.M111.246983. Epub 2011 Aug 18.
7
Predicting novel binding modes of agonists to β adrenergic receptors using all-atom molecular dynamics simulations.
PLoS Comput Biol. 2011 Jan 6;7(1):e1001053. doi: 10.1371/journal.pcbi.1001053.
9
Characterization of the beta-D-glucopyranoside binding site of the human bitter taste receptor hTAS2R16.
J Biol Chem. 2010 Sep 3;285(36):28373-8. doi: 10.1074/jbc.M110.144444. Epub 2010 Jul 6.
10
Structural requirements of bitter taste receptor activation.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):11110-5. doi: 10.1073/pnas.0913862107. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验