Materials and Process Simulation Center (MC-139-74), California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States.
J Chem Inf Model. 2012 Jul 23;52(7):1875-85. doi: 10.1021/ci300133a. Epub 2012 Jul 13.
The G protein-coupled receptor (GPCR) TAS2R38 is a bitter taste receptor that can respond to bitter compounds such as phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). This receptor was chosen because its four haplotypes (based on three residue site polymorphism) hTAS2R38PAV, hTAS2R38AVI, hTAS2R38AAI, and hTAS2R38PVV are known to have dramatically different responses to PTC and PROP. We aimed to identify the protein-ligand interaction features that determine whether the bitter taste signal from this receptor is sent to the cortex. To do this we predicted the 3D structures of the TAS2R38 bitter taste receptor using our new BiHelix and SuperBiHelix Monte Carlo methods (No experimental determinations of the 3D structure have been reported for any taste receptors.). We find that residue 262 (2nd position in the polymorphism) is involved in the interhelical hydrogen bond network stabilizing the GPCR structure in tasters (hTAS2R38PAV, hTAS2R38AAI, and hTAS2R38PVV), while it is not in the nontaster (hTAS2R38AVI). This suggests that the hydrogen bond interactions between TM3 and TM6 or between TM5 and TM6 may play a role in activating this GPCR. To further validate these structures, we used the DarwinDock method to predict the binding sites and 3D structures for PTC and PROP bound to hTAS2R38PAV, hTAS2R38AVI, hTAS2R38AAI, and hTAS2R38PVV, respectively. Our results show that PTC and PROP can form H-bonds with the backbone of residue 262 in the tasters (hTAS2R38PAV, hTAS2R38AAI, and hTAS2R38PVV) but not in the nontaster (hTAS2R38AVI). Thus it appears that the hydrogen bond interaction between TM3 and TM6 may activate the receptor to pass the ligand binding signal to intracellular processes and that the H-bond between agonists and residue 262 in tasters is involved in the bitter tasting. This is in agreement with experimental observations, providing validation of the predicted ligand-protein complexes and also a potential activation mechanism for the TAS2R38 receptor.
G 蛋白偶联受体(GPCR)TAS2R38 是一种苦味受体,可对苦味化合物如苯硫脲(PTC)和 6-正丙基硫脲(PROP)做出反应。选择这个受体是因为其四个单倍型(基于三个残基位点多态性)hTAS2R38PAV、hTAS2R38AVI、hTAS2R38AAI 和 hTAS2R38PVV 对 PTC 和 PROP 的反应有显著差异。我们的目的是确定决定该受体苦味信号是否传递到大脑皮层的蛋白-配体相互作用特征。为此,我们使用新的 BiHelix 和 SuperBiHelix 蒙特卡罗方法预测了 TAS2R38 苦味受体的 3D 结构(尚未报道任何味觉受体的 3D 结构的实验测定。)。我们发现残基 262(多态性的第 2 位)参与了螺旋间氢键网络的稳定,该网络稳定了味觉受体(hTAS2R38PAV、hTAS2R38AAI 和 hTAS2R38PVV)中的 GPCR 结构,而在非味觉受体(hTAS2R38AVI)中则不存在。这表明 TM3 和 TM6 之间或 TM5 和 TM6 之间的氢键相互作用可能在激活这种 GPCR 中发挥作用。为了进一步验证这些结构,我们使用 DarwinDock 方法分别预测了 PTC 和 PROP 与 hTAS2R38PAV、hTAS2R38AVI、hTAS2R38AAI 和 hTAS2R38PVV 结合的结合位点和 3D 结构。我们的结果表明,PTC 和 PROP 可以与味觉受体(hTAS2R38PAV、hTAS2R38AAI 和 hTAS2R38PVV)中的残基 262 的骨架形成氢键,但在非味觉受体(hTAS2R38AVI)中则不能。因此,TM3 和 TM6 之间的氢键相互作用似乎可以激活受体,将配体结合信号传递到细胞内过程中,而激动剂与味觉受体中残基 262 之间的氢键则参与了苦味的产生。这与实验观察结果一致,为预测的配体-蛋白复合物提供了验证,也为 TAS2R38 受体的潜在激活机制提供了依据。