Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.
J Chem Phys. 2013 May 28;138(20):204902. doi: 10.1063/1.4807058.
Here we consider the dynamics of semiflexible polymers subject both to angular and to dihedral constraints. We succeed in obtaining analytically the dynamical matrix of such systems by extending the formalism developed by Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. This leads to a set of Langevin equations whose eigenvalues determine many dynamical properties. Exemplarily, we display the mechanical relaxation loss moduli [G"(ω)] as a function of several, distinct sets of microscopic stiffness parameters; it turns out that such differences lead to macroscopically distinct patterns.
在这里,我们考虑同时受到角约束和二面角约束的半柔性聚合物的动力学。我们通过扩展 Dolgushev 和 Blumen [J. Chem. Phys. 131, 044905 (2009)] 提出的形式体系成功地解析地得到了这类系统的动力学矩阵。这导致了一组朗之万方程,其本征值确定了许多动力学性质。作为示例,我们显示了机械弛豫损耗模量[G"(ω)]作为几个不同的微观刚度参数集的函数;事实证明,这些差异导致了宏观上不同的模式。