Dolgushev Maxim, Blumen Alexander
Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.
J Chem Phys. 2009 Jul 28;131(4):044905. doi: 10.1063/1.3184797.
We study the dynamics of general treelike networks, which are semiflexible due to restrictions on the orientations of their bonds. For this we extend the generalized Gaussian structure model, in which the dynamics obeys Langevin equations coupled through a dynamical matrix. We succeed in formulating analytically this matrix for arbitrary treelike networks and stiffness coefficients. This allows the straightforward determination of dynamical characteristics relevant to mechanical and dielectric relaxation. We show that our approach also follows from the maximum entropy principle; this principle was previously implemented for linear polymers and we extend it here to arbitrary treelike architectures.
我们研究了一般树状网络的动力学,由于其键的取向受到限制,这些网络是半柔性的。为此,我们扩展了广义高斯结构模型,其中动力学服从通过动力学矩阵耦合的朗之万方程。我们成功地为任意树状网络和刚度系数解析地推导了这个矩阵。这使得能够直接确定与机械和介电弛豫相关的动力学特性。我们表明,我们的方法也源于最大熵原理;该原理先前已应用于线性聚合物,我们在此将其扩展到任意树状结构。