Suppr超能文献

估算靶向治疗中不利拷贝数改变检测的条件概率。

Estimating conditional probabilities for the detection of unfavorable copy number alterations in a targeted therapy.

出版信息

IEEE Trans Biomed Eng. 2013 Oct;60(10):2933-42. doi: 10.1109/TBME.2013.2266356. Epub 2013 Jun 5.

Abstract

Emerging targeted therapies have shown benefits such as less toxicity and higher effectiveness in specific types of cancer treatment; however, the accessibility of these advantages may rely on correct identification of suitable patients, which remains highly immature. We assume that copy number profiles, being accessible genomic data via microarray techniques, can provide useful information regarding drug response and shed light on personalized therapy. Based on the mechanism of action (MOA) of trastuzumab in the HER2 signaling pathway, a Bayesian network model in which copy number alterations (CNAs) serve as latent parents modifying signal transduction is applied. Two model parameters M-score and R -value which stand for the qualitative and quantitative effects of CNAs on drug effectiveness and are functions of conditional probabilities (CPs), are defined. An expectation-maximization (EM) algorithm is developed for estimating CPs, M-scores, and R-values from continuous measures, such as microarray data. We show through simulations that the EM algorithm can outperform classical threshold-based methods in the estimation of CPs and thereby provide improved performance for the detection of unfavorable CNAs. Several candidates of unfavorable CNAs to the trastuzumab therapy in breast cancer are provided in a real data example.

摘要

新兴的靶向治疗在某些类型的癌症治疗中显示出了益处,如毒性更小、效果更高;然而,这些优势的可及性可能依赖于对合适患者的正确识别,而这一过程仍高度不成熟。我们假设,拷贝数谱(通过微阵列技术获得的可及基因组数据)可以提供有关药物反应的有用信息,并为个性化治疗提供线索。基于曲妥珠单抗在 HER2 信号通路中的作用机制,应用了一个贝叶斯网络模型,其中拷贝数改变(CNA)作为潜在的父母,改变信号转导。定义了两个模型参数 M 分数和 R 值,它们分别代表 CNA 对药物有效性的定性和定量影响,是条件概率(CP)的函数。开发了期望最大化(EM)算法,用于从连续测量值(如微阵列数据)中估计 CP、M 分数和 R 值。我们通过模拟表明,EM 算法在 CP 估计方面可以优于经典的基于阈值的方法,从而提高不良 CNA 检测的性能。在乳腺癌的曲妥珠单抗治疗中,提供了几个不良 CNA 的候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验