Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan.
Phys Rev Lett. 2013 May 24;110(21):215302. doi: 10.1103/PhysRevLett.110.215302. Epub 2013 May 23.
Atomic Bose-Einstein condensates confined to a dual-ring trap support Josephson vortices as topologically stable defects in the relative phase. We propose a test of the scaling laws for defect formation by quenching a Bose gas to degeneracy in this geometry. Stochastic Gross-Pitaevskii simulations reveal a -1/4 power-law scaling of defect number with quench time for fast quenches, consistent with the Kibble-Zurek mechanism. Slow quenches show stronger quench-time dependence that is explained by the stability properties of Josephson vortices, revealing the boundary of the Kibble-Zurek regime. Interference of the two atomic fields enables clear long-time measurement of stable defects and a direct test of the Kibble-Zurek mechanism in Bose-Einstein condensation.
束缚在双环陷阱中的原子玻色-爱因斯坦凝聚体在相对相位中支持约瑟夫森涡旋作为拓扑稳定的缺陷。我们提出了通过在这种几何形状中将玻色气体猝灭到简并状态来测试缺陷形成的标度律的实验。随机 Gross-Pitaevskii 模拟显示,对于快速猝灭,缺陷数与猝灭时间呈 -1/4 幂律标度关系,这与 Kibble-Zurek 机制一致。缓慢的猝灭显示出更强的猝灭时间依赖性,这可以通过约瑟夫森涡旋的稳定性来解释,揭示了 Kibble-Zurek 区的边界。两个原子场的干涉使得对稳定缺陷的清晰长时间测量和对玻色-爱因斯坦凝聚体中的 Kibble-Zurek 机制的直接测试成为可能。